Browse > Article
http://dx.doi.org/10.4283/JMAG.2015.20.1.031

Hysteresis Loops, Critical Fields and Energy Products for Exchange-spring Hard/soft/hard Trilayers  

Chen, B.Z. (Traffic and Transportation School, Dalian Jiaotong University)
Yan, S. (Traffic and Transportation School, Dalian Jiaotong University)
Ju, Y.Z. (Traffic and Transportation School, Dalian Jiaotong University)
Zhao, G.P. (College of Physics and Electronic Engineering, Sichuan Normal University)
Zhang, X.C. (College of Physics and Electronic Engineering, Sichuan Normal University)
Yue, M. (College of Materials Science and Engineering, Beijing University of Technology)
Xia, J. (College of Physics and Electronic Engineering, Sichuan Normal University)
Publication Information
Abstract
Macroscopic hysteresis loops and microscopic magnetic moment distributions have been determined by a three-dimensional (3D) model for exchange-coupled Sm-Co/${\alpha}-Fe$/Sm-Co trilayers with in-plane collinear easy axes. These results are carefully compared with the popular one-dimensional (1D) micromagnetic models and recent experimental data. It is found that the results obtained from the two methods match very well, especially for the remanence and coercivity, justifying the calculations. Both nucleation and coercive fields decrease monotonically as the soft layer thickness $L^s$ increases while the largest maximum energy product (roughly 50 MGOe) occurs when the thicknesses of hard and soft layers are 5 nm and 15 nm, respectively. Moreover, the calculated angular distributions in the thickness direction for the magnetic moments are similar. Nevertheless, the calculated nucleation and pinning fields as well as the energy products by 3D OOMMF are systematically smaller than those given by the 1D model, due mainly to the stray fields at the corners of the films. These demagnetization fields help the magnetic moments at the corners to deviate from the previous saturation state and facilitate the nucleation. Such an effect enhances as $L^s$ increases. When the thicknesses of hard and soft layers are 10 nm and 20 nm, respectively, the pinning field difference is as large as 30%, while the nucleation fields have opposite signs.
Keywords
hard/soft trilayers; hysteresis loops; energy products; micromagnetic calculation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. F. Kneller and R. Hawig, IEEE Trans. Magn. 27, 3588 (1991).   DOI   ScienceOn
2 E. E. Fullerton, J. S. Jiang, M. Grimsditch, C. H. Sowers, and S. D. Bader, Phys. Rev. B 58, 12193 (1998).   DOI
3 M. Shindo, M. Ishizone, A. Sakuma, H. Kato, and T. Miyazaki, J. Appl. Phys. 81, 4444 (1997).   DOI   ScienceOn
4 R. Skomski and J. M. D. Coey, Phys. Rev. B 48, 15812 (1993).   DOI   ScienceOn
5 S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287 1989 (2000).   DOI   ScienceOn
6 H. Zeng, J. Li, J. P. Liu, Z. L. Wang, and S. Sun, Nature 420 395 (2002).   DOI   ScienceOn
7 D. J. Sellmyer, Nature 420, 374 (2002).   DOI   ScienceOn
8 B. Balasubramanian, R. Skomski, X.-Zh. Li, Sh. R. Valloppilly, J. E. Shield, G. C. Hadjipanayis, and D. J. Sellmyer, Nano Lett. 11, 1747 (2011).   DOI   ScienceOn
9 W. B. Cui, Y. K. Takahashi, and K. Hono, Adv. Mater. 24, 6530 (2012).   DOI   ScienceOn
10 G. P. Zhao and X. L. Wang, Phys. Rev. B 74, 012409 (2006).   DOI   ScienceOn
11 J. Xia, G. P. Zhao, H. W. Zhang, Z. H. Cheng, Y. P. Feng, J. Ding, and H. T. Yang, J. Appl. Phys. 112, 013918 (2012).   DOI   ScienceOn
12 E. Goto, N. Hayashi, T. Miyashita, and K. Nakagava, J. Appl. Phys. 36, 2951 (1965).   DOI
13 T. Leineweber and H. Kronmuller, J. Magn. Magn. Mater. 176, 145 (1997).   DOI   ScienceOn
14 E. E. Fullerton, J. S. Jiang, and S. D. Bader, J. Magn. Magn. Mater. 200, 392 (1999).   DOI   ScienceOn
15 G. Asti, M. Solzi, M. Ghidini, and F. M. Neri, Phys. Rev. B 69, 174401 (2004).   DOI   ScienceOn
16 R. Pellicelli, M. Solzi, C. Pernechele, and M. Ghidini, Phys. Rev. B 83, 054434 (2011).   DOI   ScienceOn
17 R. Pellicelli, M. Solzi, V. Neu, K. Hafner, C. Pernechele, and A. M. Ghidini, Phys. Rev. B 81, 184430 (2010).   DOI   ScienceOn
18 G. P. Zhao, M. G. Zhao, H. S. Lim, Y. P. Feng, and C. K. Ong, Appl. Phys. Lett. 87, 162513 (2005).   DOI   ScienceOn
19 I. A. Al-Omari and D. J. Sellmyer, Phys. Rev. B 52, 3441 (1995).   DOI   ScienceOn
20 Z. H. Cheng, J. X. Zhang, and H. Kronmuller, Phys. Rev. B 68, 144417 (2003).   DOI   ScienceOn
21 V. Neu, K. Hafner, A. K. Patra, and L. Schultz, J. Phys. D: Appl. Phys. 39, 5116 (2006).   DOI
22 X. B. Liu and Z. Altounian, J. Appl. Phys. 111, 07B526 (2012).   DOI
23 Y. Choi, J. S. Jiang, J. E. Pearson, S. D. Bader, J. J. Kavich, J. W. Freeland, and J. P. Liu, Appl. Phys. Lett. 91, 072509 (2007).   DOI
24 S. Sawatzki, R. Heller, C. Mickel, M. Seifert, L. Schultz, and V. Neu, J. Appl. Phys. 109, 123922 (2011).   DOI   ScienceOn
25 M. J. Donahue and D. G. Porter, OOMMF user's guide, version 1.0. NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD (1999).
26 W. F. Brown, Jr., Rev. Mod. Phys. 17, 15 (1945).   DOI
27 W. F. Brown, Micromagnetics (Interscience Publishers, New York, 1963).
28 Y. Deng, G. P. Zhao, and H. W. Zhang, J. Magn. Magn. Mater 323, 535-538 (2011).   DOI   ScienceOn
29 G. Asti, M. Ghidini, R. Pellicelli, C. Pernechele, and M. Solzi, Phys. Rev. B 73, 094406 (2006).   DOI   ScienceOn
30 E. C. Stoner and E. P. Wohlfarth, Phil. Trans. R. Soc. 240, 599 (1948).   DOI