Browse > Article
http://dx.doi.org/10.4283/JMAG.2014.19.4.333

Growth of Oriented Thick Films of BaFe12O19 by Reactive Diffusion  

Fisher, John G. (School of Materials Science and Engineering, Chonnam National University)
Vu, Hung (School of Materials Science and Engineering, Chonnam National University)
Farooq, Muhammad Umer (School of Materials Science and Engineering, Chonnam National University)
Publication Information
Abstract
Single crystal growth of $BaFe_{12}O_{19}$ by the solid state crystal growth method was attempted. Seed crystals of ${\alpha}-Fe_2O_3$ were pressed into pellets of $BaFe_{12}O_{19}$ + 2 wt% $BaCO_3$ and heat-treated at temperatures between $1150^{\circ}C$ and $1250^{\circ}C$ for up to 100 hours. Instead of single crystal growth taking place on the seed crystal, BaO diffused into the seed crystal and reacted with it to form a polycrystalline reaction layer of $BaFe_{12}O_{19}$. The microstructure, chemical composition and structure of the reaction layer were studied using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), x-ray Diffraction (XRD) and micro-Raman scattering and confirmed to be that of $BaFe_{12}O_{19}$. XRD showed that the reaction layer shows a strong degree of orientation in the (h00)/(hk0) planes in the sample sintered at $1200^{\circ}C$. $BaFe_{12}O_{19}$ layers with a degree of orientation in the (hk0) planes could also be grown by heat-treating an ${\alpha}-Fe_2O_3$ seed crystal buried in $BaCO_3$ powder.
Keywords
$BaFe_{12}O_{19}$; single crystal growth; oriented thick film; microstructure; Raman scattering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Jalli, Y. K. Hong, J. J. Lee, G. S. Abo, T. Mewes, B. C. Choi, and S. G. Kim, IEEE Magn. Lett. 2, 5000104 (2011).   DOI   ScienceOn
2 J. Lee, Y. K. Hong, J. Park, W. M. Song, G. H. Kim, and A. Morisako, IEEE Magn. Lett. 2, 5000204 (2011).   DOI   ScienceOn
3 Y. Chen, A. L. Geiler, T. Chen, T. Sakai, C. Vittoria, and V. G. Harris, J. Appl. Phys. 101, 09M501 (2007).   DOI
4 R. J. Gambino and F. Leonhard, J. Am. Ceram. Soc. 44, 221 (1961).   DOI
5 J. Jalli, Y. K. Hong, G. S. Abo, S. Bae, J. J. Lee, J. H. Park, B. C. Choi, and S. G. Kim, J. Magn. Magn. Mater. 323, 2627 (2011).   DOI   ScienceOn
6 X. B. Chen, N. T. M. Hien, K. Han, J. Sur, N. H. Sung, B. K. Cho, and I. S. Yang, J. Appl. Phys. 114, 013912 (2013).   DOI   ScienceOn
7 C. Dubs, J. Krausslich, and P. Gornert, J. Cryst. Growth 318, 800 (2011).   DOI   ScienceOn
8 D. B. Hovis and K. T. Faber, Scripta Mater. 44, 2525 (2001).   DOI   ScienceOn
9 Y. Chen, T. Fitchorov, J. Gao, A. Koblischka-Veneva, M. R. Koblischka, C. Vittoria, and V. G. Harris, Nanotechnology 20, 445606 (2009).   DOI   ScienceOn
10 S. D. Yoon and C. Vittoria, IEEE Trans. Magn. 39, 3163 (2003).   DOI   ScienceOn
11 Y. A. Kranov, A. Abuzir, T. Prakash, D. N. McIlroy, and W. J. Yeh, IEEE Trans. Magn. 42, 3338 (2006).   DOI   ScienceOn
12 H. Y. Lee, Solid-State Single Crystal Growth (SSCG) Method: A Cost-effective Way of Growing Piezoelectric Single Crystals. In: S. Trolier-McKinstry, L. E. Cross and Y. Yamashita (Eds.), Piezoelectric Single Crystals and their Applications, Pennsylvania State University, State College, PA (2003) pp. 160-177.
13 K. Kugimiya, K. Hirota, and K. Matsuyama, Process for Producing Single Crystal Ceramics. US Pat. No. 4900393 (1990).
14 A. Khan, F. A. Meschke, T. Li, A. M. Scotch, H. M. Chan, and M. P. Harmer, J. Am. Ceram. Soc. 82, 2958 (1999).
15 J. G. Fisher, A. Bencan, J. Holc, M. Kosec, S. Vernay, and D. Rytz, J. Crys. Growth 303, 487 (2007).   DOI   ScienceOn
16 ICDD cards #74-1121 and #88-2359
17 Y. Goto and T. Takada, J. Am. Ceram. Soc. 43, 150 (1960).   DOI
18 A. M. Jubb and H. C. Allen, ACS Appl. Mater. Interfaces 2, 2804 (2010).   DOI   ScienceOn
19 J. Kreisel, G. Lucazeau, and H. Vincent, J. Sol. Stat. Chem. 137, 127 (1998).   DOI   ScienceOn
20 J. Kreisel, G. Lucazeau, and H. Vincent, J. Raman Spectrosc. 30, 115 (1999).   DOI
21 W. Y. Zhao, P. Wei, X. Y. Wu, W. Wang, and Q. J. Zhang, J. Appl. Phys. 103, 063902 (2008).   DOI   ScienceOn
22 J. Kreisel, S. Pignard, H. Vincent, J. P. Senateur, and G. Lucazeau, Appl. Phys. Lett. 73, 1194 (1998).   DOI   ScienceOn
23 V. Pankov, A. Bartholdson, O. Stukalov, S. Smolenchuk, O. Babushkin, and V. Gremenok, J. Cryst. Growth 252, 382 (2003).   DOI   ScienceOn
24 D. B. Hovis, K. T. Faber, and E. A. Kenik, J. Mater. Sci. 43, 1836 (2008).   DOI
25 H. Z. Wang, Q. He, G. H. Wen, F. Wang, Z. H. Ding, and B. Yao, J. Alloys Compd. 504, 70 (2010).   DOI   ScienceOn
26 H. P. Steir, J. Requena, and J. S. Moya, J. Mater. Res. 14, 3647 (1999).   DOI
27 S. R. Shinde, R. Ramesh, S. E. Lofland, S. M. Bhagat, S. B. Ogale, R. P. sharma, and T. Venkatesan, Appl. Phys. Lett. 72, 3443 (1998).   DOI   ScienceOn
28 Z. Chen, A. Yang, Z. Cai, S. D. Yoon, K. Ziemer, C. Vittoria, and V. G. Harris, IEEE Trans. Magn. 42, 2855 (2006).   DOI   ScienceOn
29 J. G. Fisher, A. Bencan, J. Godnjavec, and M. Kosec, J. Eur. Ceram. Soc. 28, 1657 (2008).   DOI   ScienceOn
30 T. Yamamoto and T. Sakuma, J. Am. Ceram. Soc. 77, 1107 (1994).   DOI   ScienceOn
31 A. Goldman, Modern Ferrite Technology 2nd Edition, Springer, New York (2010) pp. 51-70.
32 J. Jalli, Y. K. Hong, S. Bae, J. J. Lee, G. S. Abo, J. H. Park, B. C. Choi, T. Mewes, S. G. Kim, S. H. Gee, I. T. Nam, and T. Tanaka, J. Appl. Phys. 109, 07A509 (2011).   DOI
33 A. Bencan, E. Tchernychova, H. Ursic, M. Kosec, and J. G. Fisher, Growth and characterization of potassium sodium niobate single crystals by solid state crystal growth. In: M. Lallart (Ed.), Ferroelectrics-Material aspects, Intech, Croatia (2011) pp. 87-108.