Browse > Article
http://dx.doi.org/10.4283/JMAG.2013.18.3.221

Temperature Dependence of Mn2+ Paramagnetic Ion in a Stoichiometric LiNbO3 Single Crystal  

Yeom, Tae Ho (Department of Laser and Optical Information Engineering, Cheongju University)
Lee, Soo Hyung (Department of Laser and Optical Information Engineering, Cheongju University)
Publication Information
Abstract
Electron paramagnetic resonance (EPR) spectra of $Mn^{2+}$ impurity ion in Stoichiometric $LiNbO_3$ single crystal (SLN) was investigated with an X-band EPR spectrometer in the temperature range of 3 K~296 K. The intensity of EPR spectrum of $Mn^{2+}$ ion was increased to 20 K and decreased again below 20 K as the temperature decreases. The zero-field splitting parameter D decreased as the temperature increases. It was suggested that $Mn^{2+}$ ion substitute for $Nb^{5+}$ ion instead of $Li^+$ ion. No changes for hyperfine interaction of $Mn^{2+}$ ion was obtained in the temperature range of 3 K~296 K.
Keywords
$LiNbO_3$ single crystal; $Mn^{2+}$ ion; electron paramagnetic resonance; temperature dependence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. Karunadasa, Q. Huang, B. G. Ueland, P. Schiffer, and R. J. Cava, Proceedings of the National Academy of Sciences of the USA 100, 8097 (2003).   DOI   ScienceOn
2 G. Burns, J. Chem. Phys. 31, 1253 (1959).   DOI
3 S. H. Choh, H. T. Kim, H. K. Choh, C. S. Han, D. Choi, and J. N. Kim, Bull. Mag. Res. 11, 371 (1989).
4 W. J. Nicholson and G. Burns, Phys. Rev. 129, 2490 (1963).   DOI
5 Z. Xu and Y. Xu, Mater. Lett. 61, 3243 (2007).   DOI   ScienceOn
6 O. F. Schirmer, O. Thiemann, and M. Wohlecke, J. Phys. Chem. Solids 52, 185 (1991).   DOI   ScienceOn
7 T. Fujiwara, M. Takahashi, M. Ohama, A. Ikushima, Y. Furukawa, and K. Kitamura, Electron. Lett. 35, 499 (1999).   DOI   ScienceOn
8 V. Gopalan, T. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).   DOI   ScienceOn
9 X. Chen, D. Zhu, B. Li, T. Ling, and Z. Wu, Opt. Lett. 26, 998 (2001).   DOI
10 T. H. Yeom, S. H. Choh, Y. M. Chang, and C. Rudowicz, Phys. Stat. Sol. (b) 185, 409 (1994).   DOI   ScienceOn
11 T. H. Yeom, S. H. Lee, S. H. Choh, and D. Choi, J. Korean Phys. Soc. 32, S647 (1998).
12 V. Grachev and G. Malovichko, Phys. Rev. B 62, 7779 (2000).   DOI   ScienceOn
13 S. H. Lee, T. H. Yeom, and S. H. Kim, J. Magnetics 17, 251 (2012).   DOI   ScienceOn
14 H. W. Shin, S. H. Choh, T. H. Yeom, and K. S. Hong, J. Korean Phys. Soc. 32, S662 (1998).
15 M. P. Petrov, Soviet Phys.-Solid State 10, 2574 (1969).
16 D. G. Rexford and Y. M. Kim, J. Chem. Phys. 57, 3094 (1972).   DOI
17 M. D. Glinchuk, G. I. Malovichko, I. P. Bykov, and V. G. Grachev, Ferroelectrics 92, 83 (1989).   DOI   ScienceOn
18 T. H. Yeom, S. H. Choh, Y. M. Chang, and C. Rudowicz, Phys. Stat. Sol. (b) 185, 417 (1994).   DOI   ScienceOn
19 S. C. Abrahams and P. Marsh, Acta Cryst. B 42, 61 (1986).   DOI
20 S. C. Abrahams, J. M. Reddy, and J. L. Bernstein, J. Phys. Chem. Solids 27, 997 (1966).   DOI   ScienceOn
21 G. Malovichko, V. Grachev, V. Kokanyan, and O. Shirmer, Phys. Rev. B 59, 9113 (1999).   DOI   ScienceOn
22 D. K. McMillen, T. D. Hudson, J. Wagner, and J. Singleton, Opt. Express 2, 491 (1998).   DOI
23 A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, Oxford (1970).
24 C. Rudowicz, Mag. Res. Rev. 13, 1 (1987).
25 K. Buse, F. Jermann, and E. Kratzig, Opt. Matter. 4, 237 (1995).   DOI   ScienceOn
26 J. Imbrock, S,. Wevering, K. Buse, and E. Kratzig, J. Opt. Soc. Am. B 16, 1392 (1999).   DOI
27 X. Yue, A. Adibi, T. Hudson, K. Buse, and D. Psaltis, J. Appl. Phys. 87, 4051 (2000).   DOI   ScienceOn
28 T. Pliska, D. Fluck, and P. Gunter, in Nonlinear Optical Effects and Materials, edited by P. Gunter, Springer, Berlin (2000) pp. 479-482.
29 T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, Opt. Lett. 25, 651 (2000).   DOI
30 R. L. Byer and J. F. Young, J. Appl. Phys. 41, 2320 (1970).   DOI
31 S. Kostritskii and O. Sevostyanov, Appl. Phys. B 65, 527 (1997).   DOI   ScienceOn
32 M. Ohira, Z. Chen, and T. Kasanmatsu, Jpn. J. Appl. Phys. 30, 2326 (1991).   DOI
33 T. Tsuboi, M. Grinberg, and S. M. Kaczmarek, J. Alloys Compd. 341, 333 (2002).   DOI   ScienceOn
34 Y. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, and K. Buse, J. Opt. Soc. Am. B 20, 1491 (2003).   DOI   ScienceOn
35 K. Buse, F. Jermann, and E. Kratzig, Appl. Phys. A 58, 191 (1994).
36 E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, Appl. Phys. Lett. 86, 161119 (2005).   DOI   ScienceOn
37 G. Q. Zhang, G. Y. Zhang, S. M. Liu, J. J. Xu, and Q. Sun, J. Appl. Phys. 83, 4392 (1998).   DOI   ScienceOn
38 Y. Furukawa, K. Kitamura, K. Niwa, and H. Hatano, Opt. Lett. 23, 1892 (1998).   DOI
39 Y. Furukawa, K. Kitamura, Y. Ji, G. Montemezzani, M. Zgonik, C. Medrano, and P. Gunter, Opt. Lett. 22, 501 (1997).   DOI
40 F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, J. Appl. Phys. 84, 2251 (1998).   DOI   ScienceOn
41 T. Zhang, B. Wang, S. Fang, and D. Ma, J. Phys. D: Appl. Phys. 38, 2013 (2005).   DOI   ScienceOn
42 I. Tomeno and S. Matsumura, J. Phys. Soc. Japan 56, 163 (1987).   DOI