Browse > Article
http://dx.doi.org/10.4283/JMAG.2012.17.4.251

Electron Magnetic Resonance of Eu2+ in SrCl2:Eu Single Crystal  

Lee, Soo Hyung (Department of Laser and Optical Information Engineering, Cheongju University)
Yeom, Tae Ho (Department of Laser and Optical Information Engineering, Cheongju University)
Kim, Sung-Hwan (Department of Radiological Science, Cheongju University)
Publication Information
Abstract
The electron paramagnetic resonance (EPR) of the $Eu^{2+}$ ion in $SrCl_2$:Eu single crystal has been investigated using an X-band spectrometer. The angular dependence of magnetic resonance positions for the $Eu^{2+}$ impurity ion in the crystallographic aa-plane is analyzed with effective spin-Hamiltonian. The EPR spectra of the isolated $Eu^{2+}$ center merged to each other. The hyperfine splitting of the isolated $Eu^{2+}$ center due to the $^{151}Eu$ nucleus is approximately 35 G. Three kinds of $Eu^{2+}$ centers except the isolated $Eu^{2+}$ center, $Eu^{2+}$ pairs, $Eu^{2+}$ triples, and other $Eu^{2+}$ clusters, are split from the fitting of the integrated experimental spectrum with the Gaussian curve. The calculated spectroscopic splitting parameters of the $Eu^{2+}$ pairs, $Eu^{2+}$ triples, and other $Eu^{2+}$ clusters in $SrCl_2$:Eu crystal are $g_1$ = 2.06, $g_2$ = 1.94, and $g_3$ = 1.93, respectively.
Keywords
EPR; $SrCl_2$:Eu crystal; $Eu^{2+}$ impurity; clustered $Eu^{2+}$ ions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. F. Knoll, Radiation Detection and Measurement, Willey, New York (1999).
2 J. Moon, H. Kang, H. J. Kim, W. Kim, H. Park, S. Kim, D. Kim, and S. Doh, J. Korean Phys. Soc. 49, 637 (2006).
3 T. Kobayasi, S. Mroczkowski, and J. F. Owen, J. Lumin. 21, 247 (1980).   DOI   ScienceOn
4 U. Caldino, M. E. Villafuerte-Castrejon, and J. Rubio, Cryst. Latt. Def. Amorph. Mat. 18, 511 (1989).
5 Z. Pan, L. Ning, B. M. Cheng, and P. A. Tanner, Chem. Phys. Lett. 428, 78 (2006).   DOI   ScienceOn
6 S. H. Kim, C. J. Kim, W. Kim, H. D. Kang, D. S. Kim, Y. K. Kim, S. H. Doh, and H. J. Seo, Jpn. J. Appl. Phys. 42, 4390 (2003).   DOI
7 T. Kobayasi, S. Mroczkowski, J. F. Owen, and L. H. Brixner, J. Lumin. 21, 247 (1980).   DOI   ScienceOn
8 P. J. Bendall, C. R. A. Catlow, and B. E. F. Fender, J. Phys. C: Solid State Phys. 14, 4377 (1981).   DOI   ScienceOn
9 R. W. Reynolds, L. A. Boatner, and M. M. Abraham, J. Chem. Phys. 52, 3851 (1970).   DOI
10 W. Low, Phys. Rev. 101, 1827 (1956).   DOI
11 W. Low and U. Rosenberger, Phys. Rev. 116, 621 (1959).   DOI
12 H. B. Utley and P. P. Mahendroo, Chem. Phys. Lett. 15, 553 (1972).   DOI   ScienceOn
13 M. T. Hutchings, K. Clausen, M. H. Dickens, W. Hayes, J. K. Kjems, P. G. Schnabel, and C. Smith, J. Phys. C: Solid State Phys. 17, 3903 (1984).   DOI   ScienceOn
14 S. Hull, S. T. Norberg, I. Ahmed, S. G. Eriksson, and C. E. Mohn, J. Solid State Chem. 184, 2925 (2011).   DOI   ScienceOn
15 L. H. Brixner, Mat. Res. Bull. 11, 1453 (1976).   DOI   ScienceOn
16 A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, Oxford (1970) Chaps. 3 and 7.
17 S. Altschuler and B. M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements, Wiley, New York (1974) Chap. 3.
18 Y. Ishikawa, J. Phys. Soc. Jpn. 21, 1473 (1966).   DOI
19 M. Adachi, T. Watanabe, S. Taniguchi, N. Takeuchi, S. Sakai, and H. Murakami, J. Materials Science: Materials in Electronics 3, 222 (1992).
20 D. S. McClure, J. Chem. Phys. 39, 2850 (1963).   DOI
21 W. H. Brumage, C. R. Yarger, and C. C. Lin, Phys. Rev. 133, A765 (1964).   DOI
22 U. W. Pohl and H. E. Gumlich, Phys. Rev. B 40, 1194 (1989).   DOI   ScienceOn
23 M. M. Kreitman and D. L. Barnett, J. Chem. Phys. 43, 364 (1965).   DOI
24 J. Li, W. Lu, and Q. Shu, J. Lumin. 40/41, 836 (1988).   DOI   ScienceOn
25 T. H. Yeom, Y. H. Lee, T. S. Hahn, M. H. Oh, and S. H. Choh, J. Appl. Phys. 79, 1004 (1996).   DOI