Browse > Article
http://dx.doi.org/10.4283/JMAG.2012.17.1.042

Design of Alternating Magnetic Field Stimulator Using Duty Factor  

Jang, Tae-Sun (Department of Oriental Biomedical Engineering, Sangji University)
Lee, Jin-Yong (Department of Oriental Biomedical Engineering, Sangji University)
Lee, Hyun-Sook (Department of Oriental Biomedical Engineering, Sangji University)
Kim, Sun-Wook (Department of Oriental Biomedical Engineering, Sangji University)
Hwang, Do-Guwn (Department of Oriental Biomedical Engineering, Sangji University)
Publication Information
Abstract
We have developed an alternating magnetic field stimulation system consisting of a switched-mode power supply and a digital control circuit which modulates a duty ratio to maintain a magnetic field intensity of a few mT even while the frequency increases up to 4 kHz with a controllable coil temperature below $30^{\circ}C$ in air. This duty ratio modulation and water circulation are advantageous for cell culture under ac-magnetic field stimulation by preventing the incubator from exceeding a cell-viable temperature of $37^{\circ}C$. Although the temperature of the coil when subjected to a sinusoidal voltage rapidly increased, that of our system modulated by the duty factor did not change. This is a potentially valuable method to investigate the effects of intermediate frequency magnetic field stimulation on biological entities such as cells, tissues and organs.
Keywords
alternating magnetic field; duty factor; cell stimulation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 P. Lovsund, Ph.D. dissertation, 47 Linkoping University, Sweden (1980).
2 W. R. Rogers, J. H. Lucas, W. E. Cory, J. L. Orr, and H. D. Smith, Bioelectromagnetics 3, 2 (1995).
3 WHO, Environmental Health Criteria, 238 (2007).
4 A. Fujita, Y. Kawahara, S. Inoue, and H. Omori, Bioelectromagnetics 31, 156 (2010).
5 J. Lee, I. Go, J. Choi, T. S. Jang, S. H. Shin, H. S. Lee, D. G. Hwang, and S. Kim, J. Magnetics 15, 209 (2010).   DOI   ScienceOn
6 D. Dallari, M. Fini, G. Giavaresi, N. D. Piccolo, C. Stagni, L. Amendola, N. Rani, S. Gnudi, and R. Giardino, Bioelectromagnetics 30, 423 (2009).   DOI   ScienceOn
7 T. Shigemitsu, T. Negishi, K. Yamazaki, Y. Kawahara, A. Haga, K. Kobayashi, and K. Muramatsu, Bioelectromagnetics 30, 36 (2009).   DOI   ScienceOn
8 I. Nishimura, S. Imai, and T. Negishi. Bioelectromagnetics 30, 573 (2009).   DOI   ScienceOn
9 J. Malmivou and R. Plonsey, Bioelectromagnetism, Oxford University Press, Oxford (1995) p. 33.
10 J. W. Choi, S. C. Shin, S. Kim, E. R. Chung, J. H. Bang, G. I. Cho, S. D. Choi, Y. S. Park, T. S. Jang, Y. M. Yoo, S. S. Lee, and D. G. Hwang, J. Appl. Phys. 107, 09B306 (2010).   DOI