Browse > Article
http://dx.doi.org/10.4283/JMAG.2011.16.4.332

Effect on N Defect in Cu-doped III-nitride Semiconductors  

Kang, Byung-Sub (Department of Nano Science and Mechanical Engineering, Konkuk University)
Lee, Jae-Kwang (Department of Nano Science and Mechanical Engineering, Konkuk University)
Lim, Yong-Sik (Department of Nano Science and Mechanical Engineering, Konkuk University)
Song, Kie-Moon (Department of Nano Science and Mechanical Engineering, Konkuk University)
Chae, Kwang-Pyo (Department of Nano Science and Mechanical Engineering, Konkuk University)
Publication Information
Abstract
We studied the effect on the electronic and magnetic properties of the N defect in clean and Cu-doped wurtzite III-nitrides by using the first-principles calculations. When it is doped two Cu atoms in the nearest neighboring sites, the system of AlN, GaN, or InN with the N vacancy is energetically more favorable than that without the N vacancy site. When the Cu concentration increases, the total magnetic moment of a supercell becomes small. The ferromagnetism of Cu atom is very low due to the weak 3d-3d coupling. It is noticeable that the spin-exchange interaction between the Cu-3d and N defect states is important.
Keywords
Cu-doped III-nitrides; nitrogen defect; ferromagnetism;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 R. Q. Wu, G. W. Peng, L. Liu, Y. P. Feng, Z. G. Huang, and Q. Y. Wu, Appl. Phys. Lett. 89, 062505 (2006).   DOI   ScienceOn
2 M. G. Ganchenkova and R. M. Nieminen, Phys. Rev. Lett. 96, 196402 (2006).   DOI   ScienceOn
3 Y. Li, W. Fan, H. Sun, X. Cheng, P. Li, X. Zhao, and M. Jiang, J. Solid State Chem. 183, 2662 (2010).   DOI   ScienceOn
4 S. Yu, Savrasov, Phys. Rev. B 54, 16470 (1996) and references therein.   DOI   ScienceOn
5 B. S. Kang, W. C. Kim, Y. Y. Shong, and H. J. Kang, J. Cryst. Growth 287, 74 (2006).   DOI   ScienceOn
6 Y. Wang and J. P. Perdew, Phys. Rev. B 43, 8911 (1991).   DOI   ScienceOn
7 P. E. Blochl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16233 (1994).
8 C. G. Broyden, Math. Comput. 19, 577 (1965).   DOI   ScienceOn
9 P. Pulay, Chem. Phys. Lett. 73, 393 (1980).   DOI   ScienceOn
10 A. Zoroddu, F. Bernardini, and P. Ruggerone, Phys. Rev. B 64, 045208 (2001).   DOI   ScienceOn
11 S.-H. Wei and A. Zunger, Appl. Phys. Lett. 69, 2719 (1996).   DOI   ScienceOn
12 P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, and M. Scheffler, Phys. Rev. B 77, 075202 (2008).   DOI   ScienceOn
13 Q. Wang, A. K. Kandalam, Q. Sun, and P. Jena, Phys. Rev. B 73, 115411 (2006).   DOI   ScienceOn
14 X. Y. Cui, D. Fernandez-Hevia, B. Delley, A. J. Freeman, and C. Stampfl, J. Appl. Phys. 101, 103917 (2007).   DOI   ScienceOn
15 S. G. Yang, A. B. Pakhomov, S. T. Hung, and C. Y. Wong, Appl. Phys. Lett. 81, 2418 (2002).   DOI   ScienceOn
16 R. Frazier, G. Thaler, M. Overberg, B. Gila, C. R. Abernathy, and S. J. Peraton, Appl. Phys. Lett. 83, 1758 (2003).   DOI   ScienceOn
17 X. Y. Cui, J. E. Medvedeva, B. Delley, A. J. Freeman, and C. Stampfl, Phys. Rev. B 75, 155205 (2007).   DOI   ScienceOn
18 X. Y. Cui, J. E. Medvedeva, B. Delley, A. J. Freeman, N. Newman, and C. Stampfl, Phys. Rev. Lett. 95, 256404 (2005).   DOI   ScienceOn
19 R. F. C. Farrow and S. S. P. Parkin, Appl. Phys. Lett. 87, 172511 (2005).   DOI   ScienceOn
20 P. P. Chen, H. Makino, and T. Yao, J. Cryst. Growth 269, 66 (2004).   DOI   ScienceOn
21 A. Ney, R. Rajaram, S. S. P. Parkin, T. Kammermeier, and S. Dhar, Phys. Rev. B 76, 035205 (2007).   DOI   ScienceOn
22 M. Hashimoto, Y.-K. Zhou, M. Kanamura, and H. Asahi, Solid State Commun. 122, 37 (2002).   DOI   ScienceOn