Browse > Article
http://dx.doi.org/10.4283/JMAG.2007.12.2.059

The Electronic Structures and Magnetism of Monolayer Fe on CuGaSe2(001)  

Jin, Ying-Jiu (Department of Physics, Inha University)
Lee, Jae-Il (Department of Physics, Inha University)
Publication Information
Abstract
Ferromagnet/Semiconductor heterostructures have attracted much attention because of their potential applications in spintronic devices. We investigated the electronic structures and magnetism of monolayer Fe on $CuGaSe_2(001)$ by using the all-electron full-potential linearized augmented plane-wave method within a generalized gradient approximation. We considered the monolayer Fe deposited on both the CuGa atoms terminated (CuGa-Term) and the Se atom terminated (Se-Term) surfaces of $CuGaSe_2(001)$. The calculated magnetic moment of the Fe atom on the CuGa-Term was about $2.90\;{{\mu}_B}$. Those of the Fe atoms on the Se-Term were in the range of $2.85-2.98\;{{\mu}_B}$. The different magnetic behaviors of the Fe atoms on two different surfaces were discussed using the calculated layer-projected density of states.
Keywords
electronic structures; surface and interface; magnetism; Fe monolayer on $CuGaSe_2(001)$; metal-semiconductor junction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 (a) D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977)
2 S. Ohnishi, A. J. Freeman, and M. Weinert, Phys. Rev. B 28, 6741 (1983)
3 C. L. Fu and A. J. Freeman, Phys. Rev. B 35, 925 (1987)   DOI   ScienceOn
4 R. Q. Wu and A. J. Freeman, Phys. Rev. B 47, 3904 (1993)
5 M. Weinert, E. Wimmer, and A. J. Freeman, ibid. 26, 4571 (1982)
6 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396(E) (1997)
7 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996); ibid. 78, 1396(E) (1997)
8 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)
9 R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature (London) 402, 787 (1999)
10 Y. Ohno, D. K. Young, B. Beschoten, F. Matdukura, H. Ohno, and D. D. Awschalom, Nature (London) 402, 790 (1999)
11 O. Wunnicke, Ph. Mavropoulos, R. Zeller, P. H. Dederichs, and D. Grundler, Phys. Rev. B 65, 241306 (2002)
12 J. E. Jaffe and Alex Zunger, Phys. Rev. 28, 5822 (1965)
13 M. Zwierzycki, K. Xia, P. J. Kelly, G. E. W. Bauer, and I. Turek, Phys. Rev. B 67, 092401 (2003)
14 G. A. Medvedkin, T. Ishibashi, T. Nishi, K. Hayata, Y. Hasegawa, and K. Sato, Jpn. J. Appl. Phys. 39, L949 (2000)
15 S. Cho, S. Choi, G.-B. Cha, S. C. Hong, Y. Kim, Y.-J. Zhao, A. J. Freeman, J. B. Ketterson, B. J. Kim, Y. C. Kim, and B.-C. Choi, Phys. Rev. Lett. 88, 257203 (2002)
16 H. W. Spiess, V. Haeberln, G. Brandt, A. Rauber, and J. Schneider, Phys. Stat. Sol. (b) 62, 183 (1974)   DOI   ScienceOn
17 S. Siebentritt, Thin Solid Films 403-404, 1 (2002)
18 E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981)
19 S. S. Kim, S. C. Hong, and J. I. Lee, Phys. Stat. Sol. (b) 189, 643 (2002)
20 Y.-J. Zhao and A. J. Freeman, J. Magn. Magn. Mater. 246, 145 (2002)