Browse > Article
http://dx.doi.org/10.4283/JMAG.2007.12.1.007

Validity of the Analytic Expression for the Temperature of Joule Heated Nano-wire  

Ha, Seung-Seok (Department of Physics, INHA University)
You, Chun-Yeol (Department of Physics, INHA University)
Publication Information
Abstract
We confirm the validity of the analytic expression for the temperature of the Joule heated nano-wire [C.-Y. You et al. Appl. Phys. Lett. 89, 222513 (2006)] with finite element method. The temperature of the Joule heated nano-wire is essential information for the research of the current induced domain wall movement. The analytic expression includes an adjustable parameter which must be determined. Since the physical origin of the adjustable parameter is simplification of the heat source profile, the validity of the analytic expression must be examined for wide range of the nano-wire structure. By comparison with this analytic expression with the results of full numerical finite element method, the adjustable parameter has been determined. The numerically confirmed adjustable parameter values are in the range of 0.60$\sim$0.69, which is well matched with the theoretically expected one. Furthermore, it is found that the adjustable parameter is a slow varying function of the nano-wire geometry. Based on this numerical confirmation, we can apply the analytic expression for the wide range of the nano-wire geometry with proper adjustable parameters.
Keywords
nano-wire; CIDWM; Joule heat; FEM; spin transfer torque;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. C. Sloncziwski, J. Magn. Magn. Mater. 159, L1 (1996)
2 L. Berger, J. Appl. Phys. 49, 2156 (1978)
3 L. Berger, Phys. Rev. B 54, 9353 (1996)
4 M. Klaui, et al. Phys. Rev. Lett. 94, 106601 (2003)
5 Z. Li and S. Zhang, Phys. Rev. B 70, 024417 (2004)
6 M. Tsoi, A. G. M. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Tsoi, and P. Wyder, Phys. Rev. Lett. 80, 4281 (1998)
7 S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J. Schoelkopf, R. A. Buhrman, and D. C. Ralph, Nature 425, 380 (2003)   DOI   ScienceOn
8 J. Z. Suna, D. J. Monsmab, T. S. Kuan, M. J. Rooks, D. W. Abraham, B. Oezyilmaz, A. D. and Kent, R. H. Koch, J. Appl. Phys. 93, 6859 (2003)
9 J. Y. Lee, S. Choi, and S.-K. Kim, J. of Magnetics 11, 74 (2006)   과학기술학회마을   DOI   ScienceOn
10 M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and H. Kano, Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International 2005, 4 (2005)
11 S. S. P. Parkin, U. S. patent 6834005 (2003)
12 E. Saitoh, H. Miyahima, T. Yamaoka, and G. Tatara, Nature 432, 203 (2004)   DOI   ScienceOn
13 A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, and T. Shinjo, Phys. Rev. Lett. 92, 077205 (2004)
14 H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon, Oxford, 1959)
15 S. Zhang and Z. Li, Phys. Rev. Lett. 93, 127204 (2004)
16 C.-Y. You, I. M. Sung, and B.-K. Joe, Appl. Phys. Lett. 89, 222513 (2006)
17 http://www.comsol.com
18 J. V. Beck, K. D. Cole, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green's Functions (Hemisphere, Washington, DC, 1992)
19 A. Yamaguchi, S. Nasu, H. Tanigawa, T. Ono, K. Miyake,K. Mibu, and T. Shinjo, Appl. Phys. Lett. 86, 012511 (2005)