Browse > Article
http://dx.doi.org/10.4283/JMAG.2005.10.1.005

Superparamagnetic Properties of Nanoparticles Ni0.9Zn0.1Fe2O4 for Biomedical Applications  

Lee, Seung-Wha (Department of Electronic Engineering Chungju National University)
Kim, Chul-Sung (Department of Physics, Kookmin University)
Publication Information
Abstract
Nanoparticles $Ni_{0.9}Zn_{0.1}Fe_2O_4$ is fabricated by a sol-gel method. The magnetic and structural properties of powders were investigated with XRD, SEM, Mossbauer spectroscopy, and VSM. $Ni_{0.9}Zn_{0.1}Fe_2O_4$ powders annealed at $300{^{\circ}C}$ have a spinel structure and behaved superparamagnetically. The estimated size of $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticle is about 10 nm. The hyperfine fields at 13 K for the A and B patterns are found to be 533 and 507 kOe, respectively. The ZFC curves are rounded at the blocking temperature ($T_B$)and show a paramagnetic-like behavior above $T_B$. $T_B$ of $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticle is about 250 K. Nanoparticles $Ni_{0.9}Zn_{0.1}Fe_2O_4$ annealed at 400 and $500{^{\circ}C}$ have a typical spinel structure and is ferrimagnetic in nature. The isomer shifts indicate that the iron ions were ferric at the tetrahedral (A) and the octahedral (B). The saturation magnetization of nanoparticles $Ni_{0.9}Zn_{0.1}Fe_2O_4$ annealed at 400 and $500{^{\circ}C}$ are 40 and 43 emu/g, respectively. The magnetic anisotropy constant of $Ni_{0.9}Zn_{0.1}Fe_2O_4$ annealed at $300{^{\circ}C}$ were calculated to be 1.6 ${\times}$ $10^6$ ergs/$cm^3$.
Keywords
Superparamagnetism; Nanoparticle; Mossbauer; Applications in Biomedicine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adam J. Rondinone, Anna C. S. Samia, and Z. J. Zhang, Appl. Phys. Lett., 76(24), 3624 (2000)
2 S. W. Lee, K. W. Woo, C. S. Kim, J. of Magnetics 9(3), 83 (2004)
3 Perdo Tartaj, Maria del Puerto Morales, Sabino Veintemillas-Veraguer and Carlos J Serna. J. Phys. D: Appl. Phys., 36 R182 (2003)
4 S. H. Im, T. Herricks, Y. T. Lee, Y. Xia, Chem. Phys. Lett., 401, 19 (2005)
5 S. K. Khanna and S. Linderoth, Phys. Rev. Lett. 67, 742 (1991)   DOI   ScienceOn
6 Qi Chen and Z. J. Zhang, Appl. Phys. Lett. 73, 3156 (1998)
7 S. W. Lee, Y. G. Ryu, K. J. Yang, K. D. Jung, S. Y. An, and C. S. Kim, J. Appl. Phys., 91(10), 610 (2002)
8 J. G. Lee, H. M. Lee, C. S. Kim, and Y. J. Oh, J. Magn. Magn. Mater. 177-181, 900 (1998)   DOI   ScienceOn
9 V. K. Sankaranarayana, Q. A. Pankhurst, D. P. Dickson, and C. E. Johnson, J. Magn. Magn. Mater. 125, 199 (1998)
10 S. J. Kim, K. D. Jung, and C. S. Kim, Hyperfine Inter­actions 156, 113 (2004)
11 C. Caizer, Mater. Science and Eng. B 100, 63 (2003)
12 B. K. Nath, P. K. Chakrabarti, S. Das, U. Kumar, P. K. Mukhopadhyay, and D. Das, Eur. Phys. B 39, 417 (2004)
13 Sufi R. Ahmed, S. B. Ogale, Georgia C. Papaefthymiou, Ramamoorthy Ramesh, and Peter Kofinas, Appl. Phys. Lett. 80(9), 1616 (2002)
14 S. W. Lee, S.Y. Yoon, S. Y. An, W. C. Kim, and C. S. Kim, J. of Magnetics 4(4), 115 (1999)
15 S. Chikazumi, Physics of Ferromagnetism, 2nd ed. (Oxford University Press, New York, 1997), p. 510
16 H. N. Ok, K. S. Baek, H. S. Lee, and C. S. Kim, Phys. Rev. B 41, 62 (1990)