Browse > Article
http://dx.doi.org/10.14317/jami.2022.153

MULTIPLIERS FOR OPERATOR-VALUED BESSEL SEQUENCES AND GENERALIZED HILBERT-SCHMIDT CLASSES  

KRISHNA, K. MAHESH (Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka(NITK))
JOHNSON, P. SAM (Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka(NITK))
MOHAPATRA, R.N. (Department of Mathematics, University of Central Florida)
Publication Information
Journal of applied mathematics & informatics / v.40, no.1_2, 2022 , pp. 153-171 More about this Journal
Abstract
In 1960, Schatten studied operators of the form $\sum_{n=1}^{{\infty}}\;{\lambda}_n(x_n{\otimes}{\bar{y_n}})$, where {xn}n and {yn}n are orthonormal sequences in a Hilbert space, and {λn}n ∈ ℓ(ℕ). Balazs generalized some of the results of Schatten in 2007. In this paper, we further generalize results of Balazs by studying the operators of the form $\sum_{n=1}^{{\infty}}\;{\lambda}_n(A^*_nx_n{\otimes}{\bar{B^*_ny_n}})$, where {An}n and {Bn}n are operator-valued Bessel sequences, {xn}n and {yn}n are sequences in the Hilbert space such that {║xn║║yn║}n ∈ ℓ(ℕ). We also generalize the class of Hilbert-Schmidt operators studied by Balazs.
Keywords
Multipliers; operator-valued bases; operator-valued Bessel sequences; Hilbert-Schmidt classes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Diana T. Stoeva and Peter Balazs, On the dual frame induced by an invertible frame multiplier, Sampl. Theory Signal Image Process. 15 (2016), 119-130.   DOI
2 D. Gabor, Theory of Communication, J. IEE 93 (1946), 429-457.
3 Ingrid Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271-1283.   DOI
4 Diana T. Stoeva and Peter Balazs, Riesz bases multipliers, Oper. Theory Adv. Appl. 236 (2014), 475-482.
5 R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.   DOI
6 Ole Christensen, An introduction to frames and Riesz bases, Applied and Numerical Harmonic Analysis, Birkhauser/Springer, [Cham], second edition, 2016.
7 Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1995.
8 Karlheinz Grochenig, Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis, Birkhauser Boston, Inc., Boston, MA, 2001.
9 Karlheinz Grochenig and Christopher Heil, Modulation spaces and pseudodifferential operators, Integral Equations Operator Theory 34 (1999), 439-457.   DOI
10 Peter Balazs and D.T. Stoeva, Representation of the inverse of a frame multiplier, J. Math. Anal. Appl. 442 (2015), 981-994.
11 Peter Balazs, Hilbert-Schmidt operators and frames-classification, best approximation by multipliers and algorithms, Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008), 315-330.   DOI
12 Robert W. Heath Jr. and Arogyaswami Paulraj, Linear dispersion codes for MIMO systems based on frame theory, IEEE Transactions on Signal Processing 50 (2002), 2429-2441.   DOI
13 Michael Frank, Vern I. Paulsen, and Terry R. Tiballi, Symmetric approximation of frames and bases in Hilbert spaces, Trans. Amer. Math. Soc. 354 (2002), 777-793.   DOI
14 Andreas Defant and Klaus Floret, Tensor norms and operator ideals, North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1993.
15 Deguang Han and David R. Larson, Frames, bases and group representations, Mem. Amer. Math. Soc. 147 (2000), x+94.
16 John R. Ringrose, Compact non-self-adjoint operators, Van Nostrand Reinhold Co., London, 1971.
17 Robert Schatten, Norm ideals of completely continuous operators, Second printing. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 27, Springer-Verlag, Berlin-New York, 1970.
18 David L. Donoho and Michael Elad, Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization, Proc. Natl. Acad. Sci. USA 100 (2003), 2197-2202.   DOI
19 Robert Schatten, On reflexive norms for the direct product of Banach spaces, Trans. Amer. Math. Soc. 54 (1943), 498-506.   DOI
20 Robert Schatten, The cross-space of linear transformations, Ann. of Math. 2 (1946), 73-84.   DOI
21 Robert Schatten and John von Neumann, The cross-space of linear transformations, Ann. of Math. 2 (1946), 608-630.
22 Robert Schatten and John von Neumann, The cross-space of linear transformations, Ann. of Math. 2 (1948), 557-582.
23 D.T. Stoeva and P. Balazs, Invertibility of multipliers, Appl. Comput. Harmon. Anal. 33 (2012), 292-299.   DOI
24 Wenchang Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), 437-452.   DOI
25 Yonina C. Eldar and G. David Forney, Optimal tight frames and quantum measurement, IEEE Trans. Inform. Theory 48 (2002), 599-610.   DOI
26 Albrecht Pietsch, Operator ideals, North-Holland Publishing Co., Amsterdam-New York, 1980.
27 Peter Balazs, Basic definition and properties of Bessel multipliers, J. Math. Anal. Appl. 325 (2007), 571-585.   DOI
28 Robert Schatten, On the direct product of Banach spaces, Trans. Amer. Math. Soc. 53 (1943), 195-217.   DOI
29 Diana T. Stoeva and Peter Balazs, Detailed characterization of conditions for the unconditional convergence and invertibility of multipliers, Sampl. Theory Signal Image Process. 12 (2013), 87-125.   DOI