Browse > Article
http://dx.doi.org/10.14317/jami.2021.895

MODELLING AFRICAN TRYPANOSOMIASIS IN HUMAN WITH OPTIMAL CONTROL AND COST-EFFECTIVENESS ANALYSIS  

GERVAS, HAMENYIMANA EMANUEL (Department of Mathematics and Statistics, University of Dodoma)
HUGO, ALFRED K. (Department of Mathematics and Statistics, University of Dodoma)
Publication Information
Journal of applied mathematics & informatics / v.39, no.5_6, 2021 , pp. 895-918 More about this Journal
Abstract
Human African Trypanosomiasis (HAT) also known as sleeping sickness, is a neglected tropical vector borne disease caused by trypanosome protozoa transmitted by bites of infected tsetse fly. The basic reproduction number, R0 derived using the next generation matrix method which shows that the disease persists in the population if the value of R0 > 1. The numerical simulations of optimal control model carried out to determine the control strategy that can combat HAT under the minimum cost. The results indicate that, the use of both education campaign, treatment and insecticides are more efficient and effective to eliminate HAT in African community but too costly. Furthermore, the cost-effectiveness of the control measures (education campaign, treatment and insecticides) were determined using incremental cost-effectiveness ratio (ICER) approach and the results show that, the use of education and treatment of infected people as the best cost effective strategy compared to other strategies.
Keywords
Human African Trypanosomiasis(HAT); control measures; optimal control; cost effectiveness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L.J.S Allen, An Introduction to Mathematical Biology, ISBN-13: 978-0130352163, 2007.
2 G.T. Azu-Tungmah, A mathematical model to control the spread of malaria in Ghana, http://hdl.handle.net/123456789/4528 (2012).
3 S. Olaniyi, and O.S. Obabiyi, Mathematical model for malaria transmission dynamics in human and mosquito populations with nonlinear forces of infection, Int. J. of Pure and App. Mathematics 88 (2013), 125-156.
4 K.S. Rock, S.J. Torr, C. Lumbala, and M.J. Keeling, Quantitative evaluation of the strategy to eliminate human African trypanosomiasis in the Democratic Republic of Congo, Rock et al. Parasites & Vectors 8 (2015), 1-13.   DOI
5 W.H.O, Control and surveillance of human African trypanosomiasis: report of a WHO expert committee, World Health Organization, Switzerland, 2013.
6 D. Kajunguri, Modelling the control of tsetse and African trypanosomiasis through application of insecticides on cattle in Southeastern Uganda, school of Stellenbosch: Stellenbosch University, 2013.
7 S.A. Pedro, S. Abelman, F.T. Ndjomatchoua, R. Sang, H.E.Z. Tonnang, Stability, bifurcation and chaos analysis of vector-borne disease model with application to rift valley Fever, PloS one, Public Library of Science 9 (2014), e108172.   DOI
8 W.H.O, WHO expert consultation on rabies, World Health Organization, Switzerland, 2013.
9 R.H. Chisholm, P.T. Campbell, Y. Wu, S.Y.C. Tong, J. McVernon and N. Geard, Implications of asymptomatic carriers for infectious disease transmission and control, The Royal Society 5 (2018), 172341.
10 P. Yan and S. Liu, SEIR epidemic model with delay, ANZIAM Journal 48 (2006), 119-134.   DOI
11 J.W. Hargrove, R. Ouifki, D. Kajunguri, G.A. Vale, and S.J. Torr, Modeling the control of trypanosomiasis using trypanocides or insecticide-treated livestock, J. PLoS neglected tropical diseases 6 (2012), e1615.   DOI
12 D. Steverding, The history of African trypanosomiasis, J. of Parasites & vectors, BioMed Central 1 (2008), 71-80.
13 E.W. Weisstein, Lyapunov Function, MathWorld https://mathworld.wolfram.com/Lyapun ovFunction.html
14 J. Esterhuizen, J. Rayaisse, I. Tirados, S. Mpiana, P. Solano, G. Vale, M. Lehane, and S.J Torr, Improving the cost-effectiveness of visual devices for the control of riverine tsetse flies, the major vectors of human African trypanosomiasis, PLoS neglected tropical diseases 5 (2011), e1257.   DOI
15 K.O. Okosun, O. Rachid, and N. Marcus, Optimal control strategies and cost-effectiveness analysis of a malaria model, J. BioSystems, Elsevier 111 (2013), 83-101.   DOI
16 W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Controls, Springer-Verlag, NY, 1975.
17 H.R. Joshi, S. Lenhart, M.Y. Li, and L. Wang, Optimal control methods applied to disease models, J. of Contemporary Mathematics 410 (2006), 187-208.   DOI
18 V.I. Maksimov, An algorithm of the dynamic reconstruction of inputs in systems with time-delay, Int J. of Adv. in Appl. Math and Mech. 1 (2013), 53-64.
19 D.J. Rogers, A general model for the African trypanosomiases, J. Parasitology, Cambridge University Press 97 (1988), 193-212.   DOI
20 P. Buscher, G. Cecchi, V. Jamonneau, and G. Priotto, Human African trypanosomiasis, Lancet 390 (2017), 2397-2409.   DOI
21 B. Heimann, Fleming, WH/Rishel, RW, Deterministic and Stochastic Optimal Control. New York-Heidelberg-Berlin. Springer-Verlag. 1975. XIII, 222 S, DM 60, 60, ZAMM-J. App. Mathematics and Mechanics 59 (1979), 494-494.   DOI
22 S. Olaniyi and O.S. Obabiyi, Qualitative analysis of malaria dynamics with nonlinear incidence function, J. App. Mathematical Sciences 8 (2014), 3889-3904.   DOI
23 S. Davis, S. Aksoy, and A. Galvani, A global sensitivity analysis for African sleeping sickness, J. Parasitology 138 (2011), 516-526.   DOI
24 M. Artzrouni and J.P. Gouteux, A compartmental model of sleeping sickness in central Africa, J. Biological Systems 4 (1996), 459-477.   DOI
25 L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko, The mathematical theory of optimal processes, J. of Applied Mathematics and Mechanics 43 (1963), 514-515.
26 J.A. Gilbert, J. Medlock, J.P. Townsend, S. Aksoy, M.N. Mbah, and A.P. Galvani, Determinants of Human African Trypanosomiasis Elimination via Paratransgenesis, J. PLoS Neglected Tropical Diseases 10 (2016), e0004465.   DOI
27 W.H.O, Working to overcome the global impact of neglected tropical diseases: first WHO report on neglected tropical diseases, World Health Organization, Geneva, 2010.
28 H.E. Gervas, N.K Opoku, and S. Ibrahim, Mathematical Modelling of Human African Trypanosomiasis Using Control Measures, J. Computational and Mathematical Methods in Medicine 2018 (2018), 1-14.
29 C. Phillips, G. Thompson, What is cost-effectiveness?, Hayward Medical Communications 1997.
30 T. Addison, V. Pikkarainen, R. Ronkko, and F. Tarp, Development and poverty in sub-Saharan Africa, WIDER Working Paper Series (2017). doi:10.35188/UNUWIDER/2017/395-0
31 A. Hugo, E.M. Lusekelo, R. Kitengeso, Optimal Control and Cost Effectiveness Analysis of Tomato Yellow Leaf Curl Virus Disease Epidemic Model, J. App. Mathematics 9 (2019), 82-88.
32 S. Lenhart, J.T. Workman, Optimal control applied to biological models, Chapman and Hall/CRC, New York, 2007.
33 Z. Ma, Dynamical modeling and analysis of epidemics, World Scientific, SINGAPORE, 2009.
34 C. Belly, Variational and Quasi Variational Inequalities, J. Appl. Math. and Computing 6 (1999), 234-266.
35 J.R. Franco, P.P. Simarro, A. Diarra and J.G. Jannin, Epidemiology of human African trypanosomiasis, Clinical Epidemiology 6 (2014), 257-275.
36 P.P. Simarro, A. Diarra, J.A.R. Postigo, J.R. Franco, and J.G. Jannin, The human African trypanosomiasis control and surveillance programme of the World Health Organization 2000-2009: the way forward, J. of PLoS neglected tropical diseases 5 (2011), e1007.   DOI
37 R. Brun, J. Blum, F. Chappuis, and C. Burri, Human African trypanosomiasis, Lancet 375 (2010), 148-159.   DOI
38 W.H.O, Human African trypanosomiasis (sleeping sickness): epidemiological update, J. of Weekly Epidemiological Record 81 (2006), 71-80.
39 L.S. Pontryagin, V.G. Boltyanskii, and R.V. Gamkrelidze, EF Mishchenko The mathematical theory of optimal processes, Interscience, New York, 1962.
40 M. Martcheva, An introduction to mathematical epidemiology, Springer, US, 2015.