Browse > Article
http://dx.doi.org/10.14317/jami.2011.29.5_6.1463

SSOR-LIKE METHOD FOR AUGMENTED SYSTEMy  

Liang, Mao-Lin (School of Mathematics and Statistics, Tianshui Normal University)
Dai, Li-Fang (School of Mathematics and Statistics, Tianshui Normal University)
Wang, San-Fu (School of Mathematics and Statistics, Tianshui Normal University)
Publication Information
Journal of applied mathematics & informatics / v.29, no.5_6, 2011 , pp. 1463-1475 More about this Journal
Abstract
This paper proposes a new generalized iterative method (SSOR-like method) for solving augmented system. A functional equation relating two involved parameters is obtained, and some convergence conditions for this method are derived. This paper generalizes some foregone results. Numerical examples show that, this method is efficient by suitable choices of the involved parameters.
Keywords
Augmented system; SOR-like method; SSOR method; SSOR-like method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D.M. Young, Iterative solutions of large linear systems, Academic Press, NY, 1971.
2 R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962, 123-125.
3 Z.Z. Bai, G.H.Golub and J.Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefilnite linear systems, Numer.Math. 98 (2004) 1-32.   DOI   ScienceOn
4 H. Elman and D.J. Silvester, Fast nonsymmetric iteraton and preconditoning for Navier- Stokes equations, SIAM J. Sci. Comput. 17 (1996), 33-46.   DOI
5 J.Y. Yuan, Iterative methods for generalized least squares problems, Ph.D. Thesis, IMPA, Rio de Janeiro, Brazil, 1993.
6 P.E. Gill, W. Murray and M.H.Wright, Practical Optimization, Academic Press, New York, NY, 1981.
7 Z.Z. Bai and G.H. Golub, Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems, IMA J. Numer. Anal. 27 (2007), 1-23.
8 N. Dyn and W.E. Ferguson Jr., The numerical solution of equality constrained quadratic programming problems, Math. Comput. 41 (1983), 165-170.
9 Z.Z. Bai, B.N. Parlett and Z.-Q.Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math. 102 (2005), 1-38.   DOI   ScienceOn
10 G.H. Golub, X. Wu, J.Y. Yuan, SOR-like method for augmented system, BIT 41(2001), 71-85.   DOI
11 K. Arrow, L. Hurwicz and H. Uzawa, Studies in Nonlinear Programming, Stanford University Press, Stanford, 1958.
12 H.C. Elman and G.H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal. 31 (1994), 1645-1661.   DOI   ScienceOn
13 S.L. Wu, T.Z. Huang, X.L. Zhao, A modifiled SSOR iterative method for augmented systems, J. Comput. Appl. Math. 228 (2009), 424-433.   DOI   ScienceOn
14 M.T. Darvishi and P. Hessari, Symmetric SOR method for augmented systems, Appl. Math. Comput. 183 (2006), 409-415.   DOI   ScienceOn
15 J.C. Li, B.J. Li and D. J. Evans, A generalized successive overrelaxation method for least squares problems, BIT 38 (1998), 347-355.   DOI
16 J.C. Li, X. Kong, Optimal parameters of GSOR-like method for solving the augmented linear system, Appl. Math. Comput. 204 (2008), 150-161.   DOI   ScienceOn
17 M.T. Darvishi, F. Khani, S. Hamedi-Nezhad and B. Zheng, Symmetric block-SOR methods for rank-defilcient least squares problems, J. Comput. Appl. Math. 215 (2008), 14-27.   DOI   ScienceOn
18 G.F. Zhang and Q.H. Lu, On generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math. 219 (2008), 51-58.   DOI   ScienceOn
19 J.T. Betts, Practical Methods for Opitmal Control Using Nonlinear Programming, SIAM, Philadelphia, PA, 2001.
20 H. Elman, D.J. Silvester, A. Wathen, Iterative methods for problems in computational fluid dynmics. in : Iterative Methods in Scientifilc Computing, Springer-Verlag, Singapore, 1997, 271-327.