Browse > Article

EXISTENCE OF PERIODIC SOLUTION OF SOME ECO-EPIDEMIOLOGICAL SYSTEMS  

Liu, Zhijun (Department of Mathematics, Hubei University for Nationalities)
Sarwardi, Sahabuddin (Department of Mathematics, Aliah University)
Publication Information
Journal of applied mathematics & informatics / v.28, no.5_6, 2010 , pp. 1359-1378 More about this Journal
Abstract
The effect of impulse in the ecological models makes them more realistic. Recently, the eco-epidemiological models have become an important field of study from the both mathematical and ecological view points. In this article, we consider some eco-epidemiological systems under the influence of impulsive force. A set of sufficient conditions for the permanence of the system are derived. Stability of the trivial solution and at least one strictly positive periodic solution are obtained. Numerical examples are given in support to our analytical findings. Finally, a short discussion concludes the paper.
Keywords
Eco-epidemiology; Impulsive effect; Permanence; Periodic solutions; Coincidence degree;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. H. McNeill, Plagues and Peoples, Anchor Press, Garden City, New York, 1976.
2 H. I. Freedman, Deterministic Mathematical Models in Population Ecology, (New York: Dekker), 1980.
3 J. D. Murray, Mathematical Biology, (New York: Springer), 1989.
4 R. M. Anderson and R. M. May, Infectious Disease of Humans, Dynamics and Control (Oxford: Oxford University Press), 1991.
5 E. Venturino, Epidemics in predator-prey model: disease in the predators, IMA J. Math. Appl. Med. Biol. Vol. 19(2002), 185-205.   DOI
6 D. Greenhalgh and M. Haque, A predator-prey model with disease in prey species only, Math. Methods. Appl. Sci. Vol. 30(2007), 911-929.
7 R. E. Gaines and J. L. Mawhin, Coincidence degree and nonlinear differential equations, Springer, Berlin, 1977.
8 Y. Xiao and L. Chen, Modelling and analysis of a predator-prey model with disease in prey, Math. Biosci. Vol. 171(2001), 59-82   DOI   ScienceOn
9 M. Haque and E. Venturino, An ecoepidemiological model with disease in predator: the ratio-dependent case, Math. Methods. Appl. Sci. Vol. 30(2007), 1791-1809.   DOI   ScienceOn
10 M. Haque and E. Venturino, Increasing of prey species may extinct the predator population:When transmissible disease in predator species, HERMIS Vol. 7(2006), 38-59.
11 X. Z. Liu and A. Willms, Impulsive stabilizability of autonomous systems, J. Math. Anal. Appl. Vol. 187(1994), 17-39.   DOI   ScienceOn
12 E. Venturino, Epidemics in predator-prey models: disease in prey, in Mathematical Population dynamics, Analysis of heterogeneity 1, in O. Arino, D. Axelrod, M. Kimmel, M. Langlais (Editors), 1995, 381-393.
13 Z. J. Liu and R. H. Tan, Impulsive harvesting and stocking in a MonodCHaldane functional response predatorCprey system, Chaos Sol. Frac. Vol. 34(2007), 454-464.   DOI   ScienceOn
14 A. Lakmeeh and O. Arino, Bifurcation of nontrivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment, Dyn. Contin. Dis. Imp. Syst. Vol. 7(2000), 265-287.
15 A. d'Onofrio, Stability Properties of Pulse Vaccination Strategy in SEIR Epidemic Model, Math. Biosci. Vol. 179(2002), 57-72.   DOI   ScienceOn
16 B. Shulgin, L. Stone and Z. Agur, Pulse Vaccination Strategy in the SIR Epidemic Model, Bull. Math. Biol. Vol. 60(1998), 1123-1148   DOI   ScienceOn
17 B. Liu, Y. J. Zhang and L. S. Chen, The dynamical behaviors of a Lotka-Volterra predator-prey model concerning integrated pest management, Non. Anal. : a RealWorld Applications, Vol. 6(2005), 227-243.
18 L. Stone, B. Shulgin and Z. Agur, Theoretical examination of the pulse vaccination policy in the SIR epidemic model, Math. Comp. Mod. Vol. 31(2000), 207-215.   DOI   ScienceOn
19 Z. H. Lu, X. B. Chi and L. S. Chen, The Effect of Constant and Pulse Vaccination on SIR Epidemic Model with Horizontal and Vertical Transmission, Math. Comp. Mod. Vol. 36(2002), 1039-1057.   DOI   ScienceOn
20 A. d'Onofrio, Pulse vaccination strategy in the SIR epidemic model:Global Asymptotic Stable Eradication in Presence of Vaccine Failures, Math. Comp. Mod. Vol. 36(2002), 473-489.   DOI   ScienceOn
21 S. Kaul, On impulsive semidynamical systems, J. Math. Anal. Appl. Vol. 150(1990), 120-128.   DOI
22 S. Y. Tang and L. S. Chen, The periodic predator-prey Lotka-Volterra model with impulsive effect, J. Mech. Med. Biol. Vol. 2(2002), 267-296.   DOI   ScienceOn
23 Y. Xue, A. Kang and Z. Jin, The existence of positive periodic solutions of an eco-epidemic model with impulsive birth, Int. J. Biomat. Vol. 1(2008), 327-337.   DOI
24 E. Beltrami and T. O. Carroll, Modelling the role of viral disease in recurrent phytoplankton blooms, J. Math. Biol. Vol. 32 (1994), 857-863.   DOI   ScienceOn
25 M. Haque and J. Chattopadhyay, Role of transmissible disease in infected prey dependent predator-prey system, Math. Comp. Model. Dyn. Syst. Vol. 13(2007), 163-178.   DOI   ScienceOn
26 X. Z. Liu, Practical stabilization of control systems with impulsive effects, J. Math. Anal. Appl. Vol. 166(1992), 563-576.   DOI
27 K. P. Hadeler and H. I. Freedman, Predator-prey populations with parasitic infection, J. Math. Biol. Vol. 27(1989), 609-631.   DOI
28 W. Zhang and M. Fan, Periodicity in a Generalized Ecological Competition System Governed by Impulsive Differential Equations with Delays, Math. Comp. Mod. Vol. 39(2004), 479-493.   DOI   ScienceOn
29 W. M. Getz, Population dynamics-a per capita resource approach, J. Theo. Biol. Vol. 108(1984), 623-643.   DOI
30 M. Liu, Z. Jin and M. Haque, An impulsive predator-prey model with communicable disease in the prey species only, Nonlinear Analysis: Real World Applications. Vol. 10(2009), 3098-3111.   DOI   ScienceOn
31 Z. Jin, H. Maoan and G. Li, The persistence in a LotkaVolterra competition systems with impulsive, Chaos Sol. Frac. Vol. 24(2005), 1105-1117.   DOI   ScienceOn
32 D. Bainov and P. Simeonov, Impulsive differential equations: Periodic solutions and applications, Longman Scientific and Technical, 1993.
33 S. Zhang, L. Dong and L. Chen, The study of predatorprey system with defensive ability of prey and impulsive perturbations on the predator, Chaos Sol. Frac. Vol. 23(2005), 631643.