Browse > Article
http://dx.doi.org/10.5483/BMBRep.2022.55.10.115

Emerging roles of neutrophils in immune homeostasis  

Lee, Mingyu (Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University)
Lee, Suh Yeon (Department of Biological Sciences, Sungkyunkwan University)
Bae, Yoe-Sik (Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University)
Publication Information
BMB Reports / v.55, no.10, 2022 , pp. 473-480 More about this Journal
Abstract
Neutrophils, the most abundant innate immune cells, play essential roles in the innate immune system. As key innate immune cells, neutrophils detect intrusion of pathogens and initiate immune cascades with their functions; swarming (arresting), cytokine production, degranulation, phagocytosis, and projection of neutrophil extracellular trap. Because of their short lifespan and consumption during immune response, neutrophils need to be generated consistently, and generation of newborn neutrophils (granulopoiesis) should fulfill the environmental/systemic demands for training in cases of infection. Accumulating evidence suggests that neutrophils also play important roles in the regulation of adaptive immunity. Neutrophil-mediated immune responses end with apoptosis of the cells, and proper phagocytosis of the apoptotic body (efferocytosis) is crucial for initial and post resolution by producing tolerogenic innate/adaptive immune cells. However, inflammatory cues can impair these cascades, resulting in systemic immune activation; necrotic/pyroptotic neutrophil bodies can aggravate the excessive inflammation, increasing inflammatory macrophage and dendritic cell activation and subsequent TH1/TH17 responses contributing to the regulation of the pathogenesis of autoimmune disease. In this review, we briefly introduce recent studies of neutrophil function as players of immune response.
Keywords
Efferocytosis; Granulopoiesis; Immune homeostasis; Neutrophil; Resolution;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bae GH, Kim YS, Park JY et al (2022) Unique characteristics of lung resident neutrophils are maintained by PGE2/ PKA/Tgm2-mediated signaling. Blood 140, 889-899
2 Thanabalasuriar A, Scott BNV, Peiseler M et al (2019) Neutrophil extracellular traps confine pseudomonas aeruginosa ocular biofilms and restrict brain invasion. Cell Host Microbe 25, 526-536.e524   DOI
3 Kienle K, Glaser KM, Eickhoff S et al (2021) Neutrophils self-limit swarming to contain bacterial growth in vivo. Science 372, eabe7729   DOI
4 Branzk N, Lubojemska A, Hardison SE et al (2014) Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 15, 1017-1025   DOI
5 Li X, Utomo A, Cullere X et al (2011) The β-glucan receptor Dectin-1 activates the integrin Mac-1 in neutrophils via vav protein signaling to promote Candida albicans clearance. Cell Host Microbe 10, 603-615   DOI
6 Lu T, Kobayashi SD, Quinn MT and Deleo FR (2012) A NET outcome. Front Immunol 3, 365
7 Yvan-Charvet L and Ng LG (2019) Granulopoiesis and neutrophil homeostasis: a metabolic, daily balancing act. Trends Immunol 40, 598-612   DOI
8 Cassatella MA, Ostberg NK, Tamassia N and Soehnlein O (2019) Biological roles of neutrophil-derived granule proteins and cytokines. Trends Immunol 40, 648-664   DOI
9 Brostjan C and Oehler R (2020) The role of neutrophil death in chronic inflammation and cancer. Cell Death Discov 6, 26   DOI
10 Li P, Jiang M, Li K et al (2021) Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat Immunol 22, 1107-1117   DOI
11 Lagasse E and Weissman IL (1994) bcl-2 inhibits apoptosis of neutrophils but not their engulfment by macrophages. J Exp Med 179, 1047-1052   DOI
12 Zhao X, Yang L, Chang N et al (2020) Neutrophils undergo switch of apoptosis to NETosis during murine fatty liver injury via S1P receptor 2 signaling. Cell Death Dis 11, 379   DOI
13 Yang Y, Wang Y, Guo L, Gao W, Tang T-L and Yan M (2022) Interaction between macrophages and ferroptosis. Cell Death Dis 13, 355   DOI
14 Papayannopoulos V (2018) Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 18, 134-147   DOI
15 Liew PX and Kubes P (2019) The neutrophil's role during health and disease. Physiol Rev 99, 1223-1248   DOI
16 Kolaczkowska E and Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13, 159-175   DOI
17 Dinauer MC (2019) Inflammatory consequences of inherited disorders affecting neutrophil function. Blood 133, 2130-2139   DOI
18 Warnatsch A, Tsourouktsoglou T-D, Branzk N et al (2017) Reactive oxygen species localization programs inflammation to clear microbes of different size. Immunity 46, 421-432   DOI
19 Lee SK, Kim SD, Kook M et al (2015) Phospholipase D2 drives mortality in sepsis by inhibiting neutrophil extracellular trap formation and down-regulating CXCR2. J Exp Med 212, 1381-1390   DOI
20 Hopke A, Scherer A, Kreuzburg S et al (2020) Neutrophil swarming delays the growth of clusters of pathogenic fungi. Nat Commun 11, 2031   DOI
21 Margaroli C, Moncada-Giraldo D, Gulick DA et al (2021) Transcriptional firing represses bactericidal activity in cystic fibrosis airway neutrophils. Cell Rep Med 2, 100239   DOI
22 Monteith AJ, Miller JM, Maxwell CN, Chazin WJ and Skaar EP (2021) Neutrophil extracellular traps enhance macrophage killing of bacterial pathogens. Sci Adv 7, eabj2101   DOI
23 Castanheira FVS and Kubes P (2019) Neutrophils and NETs in modulating acute and chronic inflammation. Blood 133, 2178-2185   DOI
24 Enyedi B, Kala S, Nikolich-Zugich T and Niethammer P (2013) Tissue damage detection by osmotic surveillance. Nat Cell Biol 15, 1123-1130   DOI
25 Ping L, Wu Y, Hosu BG, Tang JX and Berg HC (2014) Osmotic pressure in a bacterial swarm. Biophys J 107, 871-878   DOI
26 Chen K, Murao A, Arif A et al (2021) Inhibition of efferocytosis by extracellular CIRP-Induced neutrophil extracellular traps. J Immunol 206, 797-806   DOI
27 Lee CK, Raz R, Gimeno R et al (2002) STAT3 is a negative regulator of granulopoiesis but is not required for GCSF-dependent differentiation. Immunity 17, 63-72   DOI
28 Benoit ME, Clarke EV, Morgado P, Fraser DA and Tenner AJ (2012) Complement protein C1q directs macrophage polarization and limits inflammasome activity during the uptake of apoptotic cells. J Immunol 188, 5682-5693   DOI
29 Tran MTN, Hamada M, Jeon H et al (2017) MafB is a critical regulator of complement component C1q. Nat Commun 8, 1700   DOI
30 Croker BA, Metcalf D, Robb L et al (2004) SOCS3 is a critical physiological negative regulator of G-CSF signaling and emergency granulopoiesis. Immunity 20, 153-165   DOI
31 Hutchins AP, Diez D and Miranda-Saavedra D (2013) The IL-10/STAT3-mediated anti-inflammatory response: recent developments and future challenges. Brief Funct Genom 12, 489-498   DOI
32 Morris R, Kershaw NJ and Babon JJ (2018) The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci 27, 1984-2009   DOI
33 Clarke EV, Weist BM, Walsh CM and Tenner AJ (2015) Complement protein C1q bound to apoptotic cells suppresses human macrophage and dendritic cell-mediated Th17 and Th1 T cell subset proliferation. J Leukoc Biol 97, 147-160   DOI
34 van Gisbergen KP, Sanchez-Hernandez M, Geijtenbeek TB and van Kooyk Y (2005) Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J Exp Med 201, 1281-1292   DOI
35 Luo B, Han F, Xu K et al (2016) Resolvin D1 Programs inflammation resolution by increasing TGF-β expression induced by dying cell clearance in experimental autoimmune neuritis. J Neurosci 36, 9590-9603   DOI
36 Yuan J, Lin F, Chen L et al (2022) Lipoxin A4 regulates M1/M2 macrophage polarization via FPR2-IRF pathway. Inflammopharmacology 30, 487-498   DOI
37 Prieto P, Cuenca J, Traves PG, Fernandez-Velasco M, Martin-Sanz P and Bosca L (2010) Lipoxin A4 impairment of apoptotic signaling in macrophages: implication of the PI3K/Akt and the ERK/Nrf-2 defense pathways. Cell Death Differ 17, 1179-1188   DOI
38 Son M, Porat A, He M et al (2016) C1q and HMGB1 reciprocally regulate human macrophage polarization. Blood 128, 2218-2228
39 Apel F, Andreeva L, Knackstedt LS et al (2021) The cytosolic DNA sensor cGAS recognizes neutrophil extracellular traps. Sci Signal 14, eaax7942   DOI
40 Boada-Romero E, Martinez J, Heckmann BL and Green DR (2020) The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol 21, 398-414
41 Ebata KO, Hashimoto D, Takahashi S, Hayase E, Ogasawara R and Teshima T (2017) Intestinal microbiota play a critical role in neutrophil engraftment posttransplant and recovery after chemotherapy by stimulating T cell Production of IL-17A. Blood 130, 3166
42 Steinman RM, Turley S, Mellman I and Inaba K (2000) The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 191, 411-416   DOI
43 Grzywa TM, Sosnowska A, Matryba P et al (2020) Myeloid cell-derived arginase in cancer immune response. Front immunol 11, 938   DOI
44 Deryugina EI, Zajac E, Juncker-Jensen A, Kupriyanova TA, Welter L and Quigley JP (2014) Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesisinducing MMP-9 in the tumor microenvironment. Neoplasia 16, 771-788   DOI
45 Moorlag SJCFM, Rodriguez-Rosales YA, Gillard J et al (2020) BCG vaccination induces long-term functional reprogramming of human neutrophils. Cell Rep 33, 108387   DOI
46 Balmer ML, Schurch CM, Saito Y et al (2014) Microbiotaderived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J Immunol Res 193, 5273-5283
47 Orsini M, Chateauvieux S, Rhim J et al (2019) Sphingolipid-mediated inflammatory signaling leading to autophagy inhibition converts erythropoiesis to myelopoiesis in human hematopoietic stem/progenitor cells. Cell Death Differ 26, 1796-1812   DOI
48 Riffelmacher T, Clarke A, Richter FC et al (2017) Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation. Immunity 47, 466-480 e465   DOI
49 Lin R, Yi Z, Wang J, Geng S and Li L (2022) Generation of resolving memory neutrophils through pharmacological training with 4-PBA or genetic deletion of TRAM. Cell Death Dis 13, 345   DOI
50 de Bree LCJ, Mourits VP, Koeken VA et al (2020) Circadian rhythm influences induction of trained immunity by BCG vaccination. J Clin Invest 130, 5603-5617   DOI
51 Rankin SM (2010) The bone marrow: a site of neutrophil clearance. J Leukoc Biol 88, 241-251   DOI
52 Sangaletti S, Tripodo C, Chiodoni C et al (2012) Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood 120, 3007-3018   DOI
53 Casanova-Acebes M, Nicolas-Avila JA, Li JL et al (2018) Neutrophils instruct homeostatic and pathological states in naive tissues. J Exp Med 215, 2778-2795   DOI
54 Zhang D and Frenette PS (2019) Cross talk between neutrophils and the microbiota. Blood 133, 2168-2177   DOI
55 Wang J, Hossain M, Thanabalasuriar A, Gunzer M, Meininger C and Kubes P (2017) Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358, 111-116   DOI
56 Fresneda Alarcon M, McLaren Z and Wright HL (2021) Neutrophils in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus: same foe different M.O. Front Immunol 12, 649693   DOI
57 Gerlach BD, Ampomah PB, Yurdagul A Jr et al (2021) Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metab 33, 2445-2463 e2448   DOI
58 Doran AC, Yurdagul A and Tabas I (2020) Efferocytosis in health and disease. Nat Rev Immunol 20, 254-267   DOI
59 Farrera C and Fadeel B (2013) Macrophage clearance of neutrophil extracellular traps is a silent process. J Immunol 191, 2647-2656   DOI
60 Ampomah PB, Cai B, Sukka SR et al (2022) Macrophages use apoptotic cell-derived methionine and DNMT3A during efferocytosis to promote tissue resolution. Nat Metab 4, 444-457   DOI
61 Kourtzelis I, Li X, Mitroulis I et al (2019) DEL-1 promotes macrophage efferocytosis and clearance of inflammation. Nat Immunol 20, 40-49   DOI
62 Schmid M, Gemperle C, Rimann N and Hersberger M (2016) Resolvin D1 polarizes primary human macrophages toward a proresolution phenotype through GPR32. J Immunol 196, 3429-3437   DOI
63 Fredman G, Ozcan L, Spolitu S et al (2014) Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-activated kinase pathway. Proc Natl Acad Sci U.S.A 111, 14530-14535   DOI
64 Arnardottir H, Thul S, Pawelzik SC et al (2021) The resolvin D1 receptor GPR32 transduces inflammation resolution and atheroprotection. J Clin Invest 131, e142883   DOI
65 Bedoui S, Herold MJ and Strasser A (2020) Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol 21, 678-695   DOI
66 Chen L, Zhao Y, Lai D et al (2018) Neutrophil extracellular traps promote macrophage pyroptosis in sepsis. Cell Death Dis 9, 597   DOI
67 Decout A, Katz JD, Venkatraman S and Ablasser A (2021) The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol 21, 548-569   DOI
68 Fullerton JN and Gilroy DW (2016) Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 15, 551-567   DOI
69 Roncarolo MG, Gregori S, Bacchetta R, Battaglia M and Gagliani N (2018) The biology of T regulatory type 1 cells and their therapeutic application in immune-mediated diseases. Immunity 49, 1004-1019   DOI
70 Taylor PR, Roy S, Leal SM et al (2014) Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2. Nat Immunol 15, 143-151   DOI
71 Diz-Munoz A, Thurley K, Chintamen S et al (2016) Membrane tension acts through PLD2 and mTORC2 to limit actin network assembly during neutrophil migration. PLoS Biol 14, e1002474   DOI
72 Manz MG and Boettcher S (2014) Emergency granulopoiesis. Nat Rev Immunol 14, 302-314   DOI
73 Yvan-Charvet L and Ng LG (2019) Granulopoiesis and neutrophil homeostasis: a metabolic, daily balancing act. Trends Immunol 40, 598-612   DOI
74 Boettcher S, Gerosa RC, Radpour R et al (2014) Endothelial cells translate pathogen signals into G-CSF-driven emergency granulopoiesis. Blood 124, 1393-1403   DOI
75 Kim SD, Kim Y-K, Lee HY et al (2010) The agonists of formyl peptide receptors prevent development of severe sepsis after microbial infection. J Immunol Res 185, 4302-4310
76 Cortez-Retamozo V, Etzrodt M, Newton A et al (2012) Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci U S A 109, 2491-2496   DOI
77 Danek P, Kardosova M, Janeckova L et al (2020) β-CateninTCF/LEF signaling promotes steady-state and emergency granulopoiesis via G-CSF receptor upregulation. Blood 136, 2574-2587   DOI
78 Silva-Garcia O, Valdez-Alarcon JJ and Baizabal-Aguirre VM (2019) Wnt/β-catenin signaling as a molecular target by pathogenic bacteria. Front Immunol 10, 2135   DOI
79 Becher B, Tugues S and Greter M (2016) GM-CSF: from growth factor to central mediator of tissue inflammation. Immunity 45, 963-973   DOI
80 Kim HS, Park MY, Lee SK, Park JS, Lee HY and Bae YS (2018) Activation of formyl peptide receptor 2 by WKYMVm enhances emergency granulopoiesis through phospholipase C activity. BMB Rep 51, 418-423   DOI
81 Freitas A, Alves-Filho JC, Victoni T et al (2009) IL-17 receptor signaling is required to control polymicrobial sepsis. J Immunol 182, 7846-7854   DOI
82 Stark MA, Huo Y, Burcin TL, Morris MA, Olson TS and Ley K (2005) Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22, 285-294   DOI
83 Khan N, Downey J, Sanz J et al (2020) M. tuberculosis reprograms hematopoietic stem cells to limit myelopoiesis and impair trained immunity. Cell 183, 752-770 e722   DOI
84 Nemeth T, Sperandio M and Mocsai A (2020) Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 19, 253-275   DOI
85 Netea MG, Dominguez-Andres J, Barreiro LB et al (2020) Defining trained immunity and its role in health and disease. Nat Rev Immunol 20, 375-388   DOI
86 Kalafati L, Kourtzelis I, Schulte-Schrepping J et al (2020) Innate immune training of granulopoiesis promotes antitumor activity. Cell 183, 771-785 e712   DOI
87 Kalafati L, Mitroulis I, Verginis P, Chavakis T and Kourtzelis I (2020) Neutrophils as orchestrators in tumor development and metastasis formation. Front Oncol 10, 581457   DOI
88 Casbon AJ, Reynaud D, Park C et al (2015) Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc Natl Acad Sci U S A 112, E566-575
89 Khosravi A, Yanez A, Price Jeremy G et al (2014) Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 15, 374-381   DOI
90 Rozman S, Yousefi S, Oberson K, Kaufmann T, Benarafa C and Simon HU (2015) The generation of neutrophils in the bone marrow is controlled by autophagy. Cell Death Differ 22, 445-456   DOI
91 Wang X, Cai J, Lin B et al (2021) GPR34-mediated sensing of lysophosphatidylserine released by apoptotic neutrophils activates type 3 innate lymphoid cells to mediate tissue repair. Immunity 54, 1123-1136.e1128   DOI
92 Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N and Brady HR (2000) Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol 164, 1663-1667   DOI
93 Lewkowicz N, Mycko MP, Przygodzka P et al (2016) Induction of human IL-10-producing neutrophils by LPS-stimulated Treg cells and IL-10. Mucosal Immunol 9, 364-378   DOI
94 Khoyratty TE, Ai Z, Ballesteros I et al (2021) Distinct transcription factor networks control neutrophil-driven inflammation. Nat Immunol 22, 1093-1106   DOI
95 Fischer A, Wannemacher J, Christ S et al (2022) Neutrophils direct preexisting matrix to initiate repair in damaged tissues. Nat Immunol 23, 518-531   DOI
96 Lim K, Hyun YM, Lambert-Emo K et al (2015) Neutrophil trails guide influenza-specific CD8+ T cells in the airways. Science 349, aaa4352   DOI
97 Vono M, Lin A, Norrby-Teglund A, Koup RA, Liang F and Lore K (2017) Neutrophils acquire the capacity for antigen presentation to memory CD4+ T cells in vitro and ex vivo. Blood 129, 1991-2001   DOI
98 Marini O, Costa S, Bevilacqua D et al (2017) Mature CD10+ and immature CD10- neutrophils present in G-CSFtreated donors display opposite effects on T cells. Blood 129, 1343-1356   DOI
99 Mysore V, Cullere X, Mears J et al (2021) FcγR engagement reprograms neutrophils into antigen cross-presenting cells that elicit acquired anti-tumor immunity. Nat Commun 12, 4791   DOI