Browse > Article
http://dx.doi.org/10.5483/BMBRep.2021.54.9.097

The trinity of ribosome-associated quality control and stress signaling for proteostasis and neuronal physiology  

Park, Jumin (Department of Biological Sciences, Ulsan National Institute of Science and Technology)
Park, Jongmin (Department of Biological Sciences, Ulsan National Institute of Science and Technology)
Lee, Jongbin (Department of Biological Sciences, Ulsan National Institute of Science and Technology)
Lim, Chunghun (Department of Biological Sciences, Ulsan National Institute of Science and Technology)
Publication Information
BMB Reports / v.54, no.9, 2021 , pp. 439-450 More about this Journal
Abstract
Translating ribosomes accompany co-translational regulation of nascent polypeptide chains, including subcellular targeting, protein folding, and covalent modifications. Ribosome-associated quality control (RQC) is a co-translational surveillance mechanism triggered by ribosomal collisions, an indication of atypical translation. The ribosome-associated E3 ligase ZNF598 ubiquitinates small subunit proteins at the stalled ribosomes. A series of RQC factors are then recruited to dissociate and triage aberrant translation intermediates. Regulatory ribosomal stalling may occur on endogenous transcripts for quality gene expression, whereas ribosomal collisions are more globally induced by ribotoxic stressors such as translation inhibitors, ribotoxins, and UV radiation. The latter are sensed by ribosome-associated kinases GCN2 and ZAKα, activating integrated stress response (ISR) and ribotoxic stress response (RSR), respectively. Hierarchical crosstalks among RQC, ISR, and RSR pathways are readily detectable since the collided ribosome is their common substrate for activation. Given the strong implications of RQC factors in neuronal physiology and neurological disorders, the interplay between RQC and ribosome-associated stress signaling may sustain proteostasis, adaptively determine cell fate, and contribute to neural pathogenesis. The elucidation of underlying molecular principles in relevant human diseases should thus provide unexplored therapeutic opportunities.
Keywords
Integrated stress response; Neuronal physiology; Proteostasis; Ribosome-associated quality control; Ribotoxic stress response;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Trentini DB, Pecoraro M, Tiwary S et al (2020) Role for ribosome-associated quality control in sampling proteins for MHC class I-mediated antigen presentation. Proc Natl Acad Sci U S A 117, 4099-4108   DOI
2 Chu J, Hong NA, Masuda CA et al (2009) A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration. Proc Natl Acad Sci U S A 106, 2097-2103   DOI
3 Ahmed A, Wang M, Bergant G et al (2021) Biallelic loss-of-function variants in NEMF cause central nervous system impairment and axonal polyneuropathy. Hum Genet 140, 579-592   DOI
4 Martin PB, Kigoshi-Tansho Y, Sher RB et al (2020) NEMF mutations that impair ribosome-associated quality control are associated with neuromuscular disease. Nat Commun 11, 4625   DOI
5 Nowakowski TJ, Bhaduri A, Pollen AA et al (2017) Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318-1323   DOI
6 Ishimura R, Nagy G, Dotu I et al (2014) Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science 345, 455-459   DOI
7 Ishimura R, Nagy G, Dotu I, Chuang JH and Ackerman SL (2016) Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation. Elife 5, e14295   DOI
8 von der Malsburg K, Shao S and Hegde RS (2015) The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon. Mol Biol Cell 26, 2168-2180   DOI
9 Joazeiro CAP (2019) Mechanisms and functions of ribosome-associated protein quality control. Nat Rev Mol Cell Biol 20, 368-383   DOI
10 Yonashiro R, Tahara EB, Bengtson MH et al (2016) The Rqc2/Tae2 subunit of the ribosome-associated quality control (RQC) complex marks ribosome-stalled nascent polypeptide chains for aggregation. Elife 5, e11794   DOI
11 Ikeuchi K, Tesina P, Matsuo Y et al (2019) Collided ribosomes form a unique structural interface to induce Hel2-driven quality control pathways. EMBO J 38, e100276
12 O'Connell AE, Gerashchenko MV, O'Donohue MF et al (2019) Mammalian Hbs1L deficiency causes congenital anomalies and developmental delay associated with Pelota depletion and 80S monosome accumulation. PLoS Genet 15, e1007917   DOI
13 Bertoli-Avella AM, Garcia-Aznar JM, Brandau O et al (2018) Biallelic inactivating variants in the GTPBP2 gene cause a neurodevelopmental disorder with severe intellectual disability. Eur J Hum Genet 26, 592-598   DOI
14 Carter MT, Venkateswaran S, Shapira-Zaltsberg G et al (2019) Clinical delineation of GTPBP2-associated neuroectodermal syndrome: report of two new families and review of the literature. Clin Genet 95, 601-606   DOI
15 Jaberi E, Rohani M, Shahidi GA et al (2016) Identification of mutation in GTPBP2 in patients of a family with neurodegeneration accompanied by iron deposition in the brain. Neurobiol Aging 38, 216 e211-216 e218
16 Sankaran VG, Joshi M, Agrawal A et al (2013) Rare complete loss of function provides insight into a pleiotropic genome-wide association study locus. Blood 122, 3845-3847   DOI
17 Terrey M, Adamson SI, Chuang JH and Ackerman SL (2021) Defects in translation-dependent quality control pathways lead to convergent molecular and neurodevelopmental pathology. Elife 10, e66904   DOI
18 Eshraghi M, Karunadharma PP, Blin J et al (2021) Mutant Huntingtin stalls ribosomes and represses protein synthesis in a cellular model of Huntington disease. Nat Commun 12, 1461   DOI
19 Yang J, Hao X, Cao X, Liu B and Nystrom T (2016) Spatial sequestration and detoxification of Huntingtin by the ribosome quality control complex. Elife 5, e11792   DOI
20 Zheng J, Yang J, Choe YJ et al (2017) Role of the ribosomal quality control machinery in nucleocytoplasmic translocation of polyQ-expanded huntingtin exon-1. Biochem Biophys Res Commun 493, 708-717   DOI
21 Giovannone B, Tsiaras WG, de la Monte S et al (2009) GIGYF2 gene disruption in mice results in neurodegeneration and altered insulin-like growth factor signaling. Hum Mol Genet 18, 4629-4639   DOI
22 Krishnamoorthy T, Pavitt GD, Zhang F, Dever TE and Hinnebusch AG (2001) Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol Cell Biol 21, 5018-5030   DOI
23 Krumm N, Turner TN, Baker C et al (2015) Excess of rare, inherited truncating mutations in autism. Nat Genet 47, 582-588   DOI
24 Wang T, Guo H, Xiong B et al (2016) De novo genic mutations among a Chinese autism spectrum disorder cohort. Nat Commun 7, 13316   DOI
25 Thyme SB, Pieper LM, Li EH et al (2019) Phenotypic landscape of schizophrenia-associated genes defines candidates and their shared functions. Cell 177, 478-491 e420   DOI
26 Saini P, Rudakou U, Yu E et al (2021) Association study of DNAJC13, UCHL1, HTRA2, GIGYF2, and EIF4G1 with Parkinson's disease. Neurobiol Aging 100, 119 e117-119 e113
27 Adomavicius T, Guaita M, Zhou Y et al (2019) The structural basis of translational control by eIF2 phosphorylation. Nat Commun 10, 2136   DOI
28 Jennings MD, Kershaw CJ, Adomavicius T and Pavitt GD (2017) Fail-safe control of translation initiation by dissociation of eIF2alpha phosphorylated ternary complexes. Elife 6, e24542   DOI
29 Stein KC and Frydman J (2019) The stop-and-go traffic regulating protein biogenesis: how translation kinetics controls proteostasis. J Biol Chem 294, 2076-2084   DOI
30 Collart MA and Weiss B (2020) Ribosome pausing, a dangerous necessity for co-translational events. Nucleic Acids Res 48, 1043-1055   DOI
31 Inada T (2020) Quality controls induced by aberrant translation. Nucleic Acids Res 48, 1084-1096   DOI
32 D'Orazio KN and Green R (2021) Ribosome states signal RNA quality control. Mol Cell 81, 1372-1383   DOI
33 Wolin SL and Maquat LE (2019) Cellular RNA surveillance in health and disease. Science 366, 822-827   DOI
34 Brandman O and Hegde RS (2016) Ribosome-associated protein quality control. Nat Struct Mol Biol 23, 7-15   DOI
35 Sitron CS and Brandman O (2020) Detection and degradation of stalled nascent chains via ribosome-associated quality control. Annu Rev Biochem 89, 417-442   DOI
36 Meydan S and Guydosh NR (2021) A cellular handbook for collided ribosomes: surveillance pathways and collision types. Curr Genet 67, 19-26   DOI
37 Vind AC, Genzor AV and Bekker-Jensen S (2020) Ribosomal stress-surveillance: three pathways is a magic number. Nucleic Acids Res 48, 10648-10661   DOI
38 Yip MCJ and Shao S (2021) Detecting and rescuing stalled ribosomes. Trends Biochem Sci 46, 731-743   DOI
39 Shoemaker CJ and Green R (2012) Translation drives mRNA quality control. Nat Struct Mol Biol 19, 594-601   DOI
40 Garshott DM, Sundaramoorthy E, Leonard M and Bennett EJ (2020) Distinct regulatory ribosomal ubiquitylation events are reversible and hierarchically organized. Elife 9, e54023   DOI
41 Higgins R, Gendron JM, Rising L et al (2015) The unfolded protein response triggers site-specific regulatory ubiquitylation of 40S ribosomal proteins. Mol Cell 59, 35-49   DOI
42 Juszkiewicz S and Hegde RS (2017) Initiation of quality control during poly(A) translation requires site-specific ribosome ubiquitination. Mol Cell 65, 743-750 e744   DOI
43 Juszkiewicz S, Chandrasekaran V, Lin Z, Kraatz S, Ramakrishnan V and Hegde RS (2018) ZNF598 is a quality control sensor of collided ribosomes. Mol Cell 72, 469-481 e467   DOI
44 Vind AC, Snieckute G, Blasius M et al (2020) ZAKalpha recognizes stalled ribosomes through partially redundant sensor domains. Mol Cell 78, 700-713 e707   DOI
45 Wu CC, Peterson A, Zinshteyn B, Regot S and Green R (2020) Ribosome collisions trigger general stress responses to regulate cell fate. Cell 182, 404-416 e414   DOI
46 Hashimoto S, Sugiyama T, Yamazaki R, Nobuta R and Inada T (2020) Identification of a novel trigger complex that facilitates ribosome-associated quality control in mammalian cells. Sci Rep 10, 3422   DOI
47 D'Orazio KN, Wu CC, Sinha N, Loll-Krippleber R, Brown GW and Green R (2019) The endonuclease Cue2 cleaves mRNAs at stalled ribosomes during No Go Decay. Elife 8, e49117   DOI
48 Hickey KL, Dickson K, Cogan JZ et al (2020) GIGYF2 and 4EHP inhibit translation initiation of defective messenger RNAs to assist ribosome-associated quality control. Mol Cell 79, 950-962 e956   DOI
49 Sinha NK, Ordureau A, Best K et al (2020) EDF1 coordinates cellular responses to ribosome collisions. Elife 9, e58828   DOI
50 Ikeuchi K, Izawa T and Inada T (2019) Recent progress on the molecular mechanism of quality controls induced by ribosome stalling. Front Genet 9, 743   DOI
51 Yan LL and Zaher HS (2021) Ribosome quality control antagonizes the activation of the integrated stress response on colliding ribosomes. Mol Cell 81, 614-628 e614   DOI
52 Matsuo Y, Ikeuchi K, Saeki Y et al (2017) Ubiquitination of stalled ribosome triggers ribosome-associated quality control. Nat Commun 8, 159   DOI
53 DiGiuseppe S, Rollins MG, Bartom ET and Walsh D (2018) ZNF598 plays distinct roles in interferon-stimulated gene expression and poxvirus protein synthesis. Cell Rep 23, 1249-1258   DOI
54 Brandman O, Stewart-Ornstein J, Wong D et al (2012) A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 151, 1042-1054   DOI
55 Shao S, Brown A, Santhanam B and Hegde RS (2015) Structure and assembly pathway of the ribosome quality control complex. Mol Cell 57, 433-444   DOI
56 Wang X, Mader MM, Toth JE et al (2005) Complete inhibition of anisomycin and UV radiation but not cytokine induced JNK and p38 activation by an aryl-substituted dihydropyrrolopyrazole quinoline and mixed lineage kinase 7 small interfering RNA. J Biol Chem 280, 19298-19305   DOI
57 Dong J, Qiu H, Garcia-Barrio M, Anderson J and Hinnebusch AG (2000) Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell 6, 269-279   DOI
58 Inglis AJ, Masson GR, Shao S et al (2019) Activation of GCN2 by the ribosomal P-stalk. Proc Natl Acad Sci U S A 116, 4946-4954   DOI
59 Harding HP, Ordonez A, Allen F et al (2019) The ribosomal P-stalk couples amino acid starvation to GCN2 activation in mammalian cells. Elife 8, e50149   DOI
60 Jandhyala DM, Ahluwalia A, Obrig T and Thorpe CM (2008) ZAK: a MAP3Kinase that transduces Shiga toxin- and ricin-induced proinflammatory cytokine expression. Cell Microbiol 10, 1468-1477   DOI
61 Canovas B and Nebreda AR (2021) Diversity and versatility of p38 kinase signalling in health and disease. Nat Rev Mol Cell Biol 22, 346-366   DOI
62 Coffey ET (2014) Nuclear and cytosolic JNK signalling in neurons. Nat Rev Neurosci 15, 285-299   DOI
63 Meydan S and Guydosh NR (2020) Disome and trisome profiling reveal genome-wide targets of ribosome quality control. Mol Cell 79, 588-602 e586   DOI
64 Arpat AB, Liechti A, De Matos M, Dreos R, Janich P and Gatfield D (2020) Transcriptome-wide sites of collided ribosomes reveal principles of translational pausing. Genome Res 30, 985-999   DOI
65 Lakshminarayan R, Phillips BP, Binnian IL et al (2020) Pre-emptive quality control of a misfolded membrane protein by ribosome-driven effects. Curr Biol 30, 854-864 e855   DOI
66 Spielmann M, Kakar N, Tayebi N et al (2016) Exome sequencing and CRISPR/Cas genome editing identify mutations of ZAK as a cause of limb defects in humans and mice. Genome Res 26, 183-191   DOI
67 Verma R, Oania RS, Kolawa NJ and Deshaies RJ (2013) Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. Elife 2, e00308   DOI
68 Anton LC and Yewdell JW (2014) Translating DRiPs: MHC class I immunosurveillance of pathogens and tumors. J Leukoc Biol 95, 551-562   DOI
69 Anazi S, Maddirevula S, Faqeih E et al (2017) Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Mol Psychiatry 22, 615-624   DOI
70 Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A and Gorman AM (2016) The integrated stress response. EMBO Rep 17, 1374-1395   DOI
71 Matsuo Y and Inada T (2021) The ribosome collision sensor Hel2 functions as preventive quality control in the secretory pathway. Cell Rep 34, 108877   DOI
72 Wang L, Xu Y, Rogers H et al (2020) UFMylation of RPL26 links translocation-associated quality control to endoplasmic reticulum protein homeostasis. Cell Res 30, 5-20   DOI
73 Izawa T, Park SH, Zhao L, Hartl FU and Neupert W (2017) Cytosolic protein Vms1 links ribosome quality control to mitochondrial and cellular homeostasis. Cell 171, 890-903 e818   DOI
74 Nyathi Y, Wilkinson BM and Pool MR (2013) Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Biochim Biophys Acta 1833, 2392-2402   DOI
75 Garzia A, Jafarnejad SM, Meyer C et al (2017) The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs. Nat Commun 8, 16056   DOI
76 Zurita Rendon O, Fredrickson EK, Howard CJ et al (2018) Vms1p is a release factor for the ribosome-associated quality control complex. Nat Commun 9, 2197   DOI
77 Lytvynenko I, Paternoga H, Thrun A et al (2019) Alanine tails signal proteolysis in bacterial ribosome-associated quality control. Cell 178, 76-90 e22   DOI
78 Crowder JJ, Geigges M, Gibson RT et al (2015) Rkr1/Ltn1 ubiquitin ligase-mediated degradation of translationally stalled endoplasmic reticulum proteins. J Biol Chem 290, 18454-18466   DOI
79 Wu Z, Tantray I, Lim J et al (2019) MISTERMINATE mechanistically links mitochondrial dysfunction with proteostasis failure. Mol Cell 75, 835-848 e838   DOI
80 Klauer AA and van Hoof A (2012) Degradation of mRNAs that lack a stop codon: a decade of nonstop progress. Wiley Interdiscip Rev RNA 3, 649-660   DOI
81 Yewdell JW (2011) DRiPs solidify: progress in understanding endogenous MHC class I antigen processing. Trends Immunol 32, 548-558   DOI
82 Su T, Izawa T, Thoms M et al (2019) Structure and function of Vms1 and Arb1 in RQC and mitochondrial proteome homeostasis. Nature 570, 538-542   DOI
83 Wu Z, Wang Y, Lim J et al (2018) Ubiquitination of ABCE1 by NOT4 in response to mitochondrial damage links co-translational quality control to PINK1-directed mitophagy. Cell Metab 28, 130-144 e137   DOI
84 Defenouillere Q, Zhang E, Namane A, Mouaikel J, Jacquier A and Fromont-Racine M (2016) Rqc1 and Ltn1 prevent C-terminal alanine-threonine tail (CAT-tail)-induced protein aggregation by efficient recruitment of Cdc48 on stalled 60S subunits. J Biol Chem 291, 12245-12253   DOI
85 Meyer C, Garzia A, Morozov P, Molina H and Tuschl T (2020) The G3BP1-family-USP10 deubiquitinase complex rescues ubiquitinated 40S subunits of ribosomes stalled in translation from lysosomal degradation. Mol Cell 77, 1193-1205 e1195   DOI
86 Juszkiewicz S, Slodkowicz G, Lin Z, Freire-Pritchett P, Peak-Chew SY and Hegde RS (2020) Ribosome collisions trigger cis-acting feedback inhibition of translation initiation. Elife 9, e60038   DOI
87 Weber R, Chung MY, Keskeny C et al (2020) 4EHP and GIGYF1/2 mediate translation-coupled messenger rna decay. Cell Rep 33, 108262   DOI
88 Hildebrandt A, Bruggemann M, Ruckle C et al (2019) The RNA-binding ubiquitin ligase MKRN1 functions in ribosome-associated quality control of poly(A) translation. Genome Biol 20, 216   DOI
89 Sitron CS and Brandman O (2019) CAT tails drive degradation of stalled polypeptides on and off the ribosome. Nat Struct Mol Biol 26, 450-459   DOI
90 Costa-Mattioli M and Walter P (2020) The integrated stress response: from mechanism to disease. Science 368, eaat5314   DOI
91 Wek RC (2018) Role of eIF2alpha Kinases in Translational Control and Adaptation to Cellular Stress. Cold Spring Harb Perspect Biol 10, e032870
92 Zhao T, Chen YM, Li Y et al (2021) Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding. Genome Biol 22, 16   DOI
93 Terrey M, Adamson SI, Gibson AL et al (2020) GTPBP1 resolves paused ribosomes to maintain neuronal homeostasis. Elife 9, e62731   DOI
94 Li S, Wu Z, Tantray I et al (2020) Quality-control mechanisms targeting translationally stalled and C-terminally extended poly(GR) associated with ALS/FTD. Proc Natl Acad Sci U S A 117, 25104-25115   DOI
95 Sundaramoorthy E, Leonard M, Mak R, Liao J, Fulzele A and Bennett EJ (2017) ZNF598 and RACK1 regulate mammalian ribosome-associated quality control function by mediating regulatory 40S ribosomal ubiquitylation. Mol Cell 65, 751-760 e754   DOI
96 Juszkiewicz S, Speldewinde SH, Wan L, Svejstrup JQ and Hegde RS (2020) The ASC-1 complex disassembles collided ribosomes. Mol Cell 79, 603-614 e608   DOI
97 Glover ML, Burroughs AM, Monem PC et al (2020) NONU-1 encodes a conserved endonuclease required for mRNA translation surveillance. Cell Rep 30, 4321-4331 e4324   DOI
98 Asih PR, Prikas E, Stefanoska K, Tan ARP, Ahel HI and Ittner A (2020) Functions of p38 MAP kinases in the central nervous system. Front Mol Neurosci 13, 570586   DOI
99 Defenouillere Q, Yao Y, Mouaikel J et al (2013) Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products. Proc Natl Acad Sci U S A 110, 5046-5051   DOI
100 Bengtson MH and Joazeiro CA (2010) Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 467, 470-473   DOI
101 Shen PS, Park J, Qin Y et al (2015) Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Science 347, 75-78   DOI
102 Kuroha K, Zinoviev A, Hellen CUT and Pestova TV (2018) Release of ubiquitinated and non-ubiquitinated nascent chains from stalled mammalian ribosomal complexes by ANKZF1 and Ptrh1. Mol Cell 72, 286-302 e288   DOI
103 Udagawa T, Seki M, Okuyama T et al (2021) Failure to degrade CAT-Tailed proteins disrupts neuronal morphogenesis and cell survival. Cell Rep 34, 108599   DOI
104 Choe YJ, Park SH, Hassemer T et al (2016) Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature 531, 191-195   DOI
105 Osuna BA, Howard CJ, Kc S, Frost A and Weinberg DE (2017) In vitro analysis of RQC activities provides insights into the mechanism and function of CAT tailing. Elife 6, e27949   DOI
106 Koren I, Timms RT, Kula T, Xu Q, Li MZ and Elledge SJ (2018) The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal degrons. Cell 173, 1622-1635 e1614   DOI
107 Lin HC, Yeh CW, Chen YF et al (2018) C-terminal end-directed protein elimination by CRL2 ubiquitin ligases. Mol Cell 70, 602-613 e603   DOI
108 Lyumkis D, Oliveira dos Passos D, Tahara EB et al (2014) Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex. Proc Natl Acad Sci U S A 111, 15981-15986   DOI
109 Rusnac DV, Lin HC, Canzani D et al (2018) Recognition of the diglycine C-end degron by CRL2(KLHDC2) ubiquitin ligase. Mol Cell 72, 813-822 e814   DOI
110 Bond S, Lopez-Lloreda C, Gannon PJ, Akay-Espinoza C and Jordan-Sciutto KL (2020) The integrated stress response and phosphorylated eukaryotic initiation factor 2alpha in neurodegeneration. J Neuropathol Exp Neurol 79, 123-143   DOI
111 Simms CL, Yan LL and Zaher HS (2017) Ribosome collision is critical for quality control during No-Go Decay. Mol Cell 68, 361-373 e365   DOI
112 Young DJ, Meydan S and Guydosh NR (2021) 40S ribosome profiling reveals distinct roles for Tma20/Tma22 (MCT-1/DENR) and Tma64 (eIF2D) in 40S subunit recycling. Nat Commun 12, 2976   DOI
113 Phillips BP and Miller EA (2020) Ribosome-associated quality control of membrane proteins at the endoplasmic reticulum. J Cell Sci 133, jcs251983   DOI
114 Wang L and Ye Y (2020) Clearing traffic jams during protein translocation across membranes. Front Cell Dev Biol 8, 610689   DOI
115 Hegde RS and Kang SW (2008) The concept of translocational regulation. J Cell Biol 182, 225-232   DOI
116 Arribere JA and Fire AZ (2018) Nonsense mRNA suppression via nonstop decay. Elife 7, e33292   DOI
117 Han P, Shichino Y, Schneider-Poetsch T et al (2020) Genome-wide survey of ribosome collision. Cell Rep 31, 107610   DOI
118 Arakawa S, Yunoki K, Izawa T, Tamura Y, Nishikawa S and Endo T (2016) Quality control of nonstop membrane proteins at the ER membrane and in the cytosol. Sci Rep 6, 30795   DOI
119 Cesaratto F, Sasset L, Myers MP, Re A, Petris G and Burrone OR (2019) BiP/GRP78 mediates ERAD targeting of proteins produced by membrane-bound ribosomes stalled at the STOP-codon. J Mol Biol 431, 123-141   DOI
120 Wu X and Rapoport TA (2018) Mechanistic insights into ER-associated protein degradation. Curr Opin Cell Biol 53, 22-28   DOI
121 Kostova KK, Hickey KL, Osuna BA et al (2017) CAT-tailing as a fail-safe mechanism for efficient degradation of stalled nascent polypeptides. Science 357, 414-417   DOI
122 Verma R, Reichermeier KM, Burroughs AM et al (2018) Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes. Nature 557, 446-451   DOI
123 Thrun A, Garzia A, Kigoshi-Tansho Y et al (2021) Convergence of mammalian RQC and C-end rule proteolytic pathways via alanine tailing. Mol Cell 81, 2112-2122 e2117   DOI