Browse > Article
http://dx.doi.org/10.5483/BMBRep.2021.54.5.035

Advances in higher-order chromatin architecture: the move towards 4D genome  

Jung, Namyoung (Department of Life Sciences, Pohang University of Science and Technology (POSTECH))
Kim, Tae-Kyung (Department of Life Sciences, Pohang University of Science and Technology (POSTECH))
Publication Information
BMB Reports / v.54, no.5, 2021 , pp. 233-245 More about this Journal
Abstract
In eukaryotes, the genome is hierarchically packed inside the nucleus, which facilitates physical contact between cis-regulatory elements (CREs), such as enhancers and promoters. Accumulating evidence highlights the critical role of higher-order chromatin structure in precise regulation of spatiotemporal gene expression under diverse biological contexts including lineage commitment and cell activation by external stimulus. Genomics and imaging-based technologies, such as Hi-C and DNA fluorescence in situ hybridization (FISH), have revealed the key principles of genome folding, while newly developed tools focus on improvement in resolution, throughput and modality at single-cell and population levels, and challenge the knowledge obtained through conventional approaches. In this review, we discuss recent advances in our understanding of principles of higher-order chromosome conformation and technologies to investigate 4D chromatin interactions.
Keywords
3D genome; 4D genome; Chromatin architecture; Chromatin loop; Chromosome conformation; Genome folding; Hi-C; Higher-order chromatin structure; TAD;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu M, Lu Y, Yang B et al (2020) Multiplexed imaging of nucleome architectures in single cells of mammalian tissue. Nat Commun 11, 2907   DOI
2 Isoda T, Moore AJ, He Z et al (2017) Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter communication and T cell fate. Cell 171, 103-119 e18   DOI
3 Dekker J, Rippe K, Dekker M and Kleckner N (2002) Capturing chromosome conformation. Science 295, 1306-1311   DOI
4 van de Werken HJ, Landan G, Holwerda SJ et al (2012) Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat Methods 9, 969-972   DOI
5 Pombo A and Dillon N (2015) Three-dimensional genome architecture: players and mechanisms. Nat Rev Mol Cell Biol 16, 245-257   DOI
6 Schoenfelder S and Fraser P (2019) Long-range enhancer-promoter contacts in gene expression control. Nat Rev Genet 20, 437-455   DOI
7 Hughes JR, Roberts N, McGowan S et al (2014) Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat Genet 46, 205-212   DOI
8 Robson MI, Ringel AR and Mundlos S (2019) Regulatory landscaping: how enhancer-promoter communication is sculpted in 3D. Mol Cell 74, 1110-1122   DOI
9 Mifsud B, Tavares-Cadete F, Young AN et al (2015) Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet 47, 598- 606   DOI
10 Javierre BM, Burren OS, Wilder SP et al (2016) Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369-1384 e19   DOI
11 Yokoshi M, Segawa K and Fukaya T (2020) Visualizing the role of boundary elements in enhancer-promoter communication. Mol Cell 78, 224-235 e5   DOI
12 Galupa R and Crocker J (2020) Enhancer-promoter communication: thinking outside the TAD. Trends Genet 36, 459-461   DOI
13 Beagan JA and Phillips-Cremins JE (2020) On the existence and functionality of topologically associating domains. Nat Genet 52, 8-16   DOI
14 Hsieh TS, Cattoglio C, Slobodyanyuk E et al (2020) Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol Cell 78, 539-553 e8   DOI
15 Ma W, Ay F, Lee C et al (2015) Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes. Nat Methods 12, 71-78   DOI
16 Ramani V, Deng X, Qiu R et al (2020) Sci-Hi-C: A single-cell Hi-C method for mapping 3D genome organization in large number of single cells. Methods 170, 61-68   DOI
17 Alberti S, Gladfelter A and Mittag T (2019) Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176, 419-434   DOI
18 Solovei I, Wang AS, Thanisch K et al (2013) LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152, 584-598   DOI
19 Hildebrand EM and Dekker J (2020) Mechanisms and functions of chromosome compartmentalization. Trends Biochem Sci 45, 385-396   DOI
20 Hu S, Lv P, Yan Z and Wen B (2019) Disruption of nuclear speckles reduces chromatin interactions in active compartments. Epigenetics Chromatin 12, 43   DOI
21 Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X and Karpen GH (2017) Phase separation drives heterochromatin domain formation. Nature 547, 241-245   DOI
22 Sanulli S, Trnka MJ, Dharmarajan V et al (2019) HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 575, 390-394   DOI
23 Gibson BA, Doolittle LK, Schneider MWG et al (2019) Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470-484 e21   DOI
24 Quinodoz SA, Ollikainen N, Tabak B et al (2018) Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744-757 e24   DOI
25 Ramani V, Deng X, Qiu R et al (2017) Massively multiplex single-cell Hi-C. Nat Methods 14, 263-266   DOI
26 Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293   DOI
27 Wang L, Gao Y, Zheng X et al (2019) Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol Cell 76, 646-659 e6   DOI
28 Plys AJ, Davis CP, Kim J et al (2019) Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2. Genes Dev 33, 799-813   DOI
29 Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376-380   DOI
30 Laflamme G and Mekhail K (2020) Biomolecular condensates as arbiters of biochemical reactions inside the nucleus. Commun Biol 3, 773   DOI
31 Dong P, Tu X, Chu PY et al (2017) 3D chromatin architecture of large plant genomes determined by local a/b compartments. Mol Plant 10, 1497-1509   DOI
32 Tan L, Xing D, Chang CH, Li H and Xie XS (2018) Three-dimensional genome structures of single diploid human cells. Science 361, 924-928   DOI
33 Ramani V, Cusanovich DA, Hause RJ et al (2016) Mapping 3D genome architecture through in situ DNase Hi-C. Nat Protoc 11, 2104-2121   DOI
34 Eres IE and Gilad Y (2020) A TAD Skeptic: Is 3D genome topology conserved? Trends Genet 37, 216-223   DOI
35 Larson AG, Elnatan D, Keenen MM et al (2017) Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin. Nature 547, 236-240   DOI
36 Fu Y, Rocha PP, Luo VM et al (2016) CRISPR-dCas9 and sgRNA scaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci. Nat Commun 7, 11707   DOI
37 Nora EP, Lajoie BR, Schulz EG et al (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381-385   DOI
38 Sexton T, Yaffe E, Kenigsberg E et al (2012) Threedimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458-472   DOI
39 Zuin J, Dixon JR, van der Reijden MI et al (2014) Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Natl Acad Sci U S A 111, 996-1001   DOI
40 Rao SS, Huntley MH, Durand NC et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665-1680   DOI
41 Eres IE, Luo K, Hsiao CJ, Blake LE and Gilad Y (2019) Reorganization of 3D genome structure may contribute to gene regulatory evolution in primates. PLoS Genet 15, e1008278   DOI
42 Van Bortle K and Corces VG (2012) Nuclear organization and genome function. Annu Rev Cell Dev Biol 28, 163-187   DOI
43 Mumbach MR, Granja JM, Flynn RA et al (2019) HiChIRP reveals RNA-associated chromosome conformation. Nat Methods 16, 489-492   DOI
44 Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214   DOI
45 Xie T, Zhang FG, Zhang HY, Wang XT, Hu JH and Wu XM (2019) Biased gene retention during diploidization in Brassica linked to three-dimensional genome organization. Nat Plants 5, 822-832   DOI
46 Finn EH, Pegoraro G, Brandao HB et al (2019) Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell 176, 1502-1515 e10   DOI
47 Flyamer IM, Gassler J, Imakaev M et al (2017) Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110-114   DOI
48 Rowley MJ and Corces VG (2018) Organizational principles of 3D genome architecture. Nat Rev Genet 19, 789-800   DOI
49 Beliveau BJ, Boettiger AN, Avendano MS et al (2015) Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat Commun 6, 7147   DOI
50 Gnirke A, Melnikov A, Maguire J et al (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27, 182-189   DOI
51 Sawh AN, Shafer MER, Su JH, Zhuang X, Wang S and Mango SE (2020) Lamina-dependent stretching and unconventional chromosome compartments in early C. elegans embryos. Mol Cell 78, 96-111 e6   DOI
52 Lakadamyali M and Cosma MP (2020) Visualizing the genome in high resolution challenges our textbook understanding. Nat Methods 17, 371-379   DOI
53 Chen B, Gilbert LA, Cimini BA et al (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479-1491   DOI
54 Ma H, Naseri A, Reyes-Gutierrez P, Wolfe SA, Zhang S and Pederson T (2015) Multicolor CRISPR labeling of chromosomal loci in human cells. Proc Natl Acad Sci U S A 112, 3002-3007   DOI
55 Zhang L, Zhang Y, Chen Y et al (2020) TSA-seq reveals a largely conserved genome organization relative to nuclear speckles with small position changes tightly correlated with gene expression changes. Genome Res 31, 251-264   DOI
56 Su JH, Zheng P, Kinrot SS, Bintu B and Zhuang X (2020) Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell 182, 1641-1659 e26   DOI
57 Nagano T, Lubling Y, Stevens TJ et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59-64   DOI
58 Zheng M, Tian SZ, Capurso D et al (2019) Multiplex chromatin interactions with single-molecule precision. Nature 566, 558-562   DOI
59 Wang G, Achim CL, Hamilton RL, Wiley CA and Soontornniyomkij V (1999) Tyramide signal amplification method in multiple-label immunofluorescence confocal microscopy. Methods 18, 459-464   DOI
60 Chen Y, Zhang Y, Wang Y et al (2018) Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler. J Cell Biol 217, 4025-4048   DOI
61 Speicher MR, Gwyn Ballard S and Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12, 368-375   DOI
62 Agbleke AA, Amitai A, Buenrostro JD et al (2020) Advances in chromatin and chromosome research: perspectives from multiple fields. Mol Cell 79, 881-901   DOI
63 Dostie J, Richmond TA, Arnaout RA et all (2006) Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16, 1299-1309   DOI
64 Nagano T, Lubling Y, Varnai C et al (2017) Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61-67   DOI
65 Gorkin DU, Leung D and Ren B (2014) The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 14, 762-775   DOI
66 Cremer T and Cremer M (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2, a003889   DOI
67 Hsieh TH, Weiner A, Lajoie B, Dekker J, Friedman N and Rando OJ (2015) Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108-119   DOI
68 Fullwood MJ, Liu MH, Pan YF et al (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462, 58-64   DOI
69 Li X, Luo OJ, Wang P et al (2017) Long-read ChIA-PET for base-pair-resolution mapping of haplotype-specific chromatin interactions. Nat Protoc 12, 899-915   DOI
70 Shao S, Zhang W, Hu H et al (2016) Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res 44, e86   DOI
71 Wang S, Su JH, Zhang F and Zhuang X (2016) An RNA-aptamer-based two-color CRISPR labeling system. Sci Rep 6, 26857   DOI
72 Sparks TM, Harabula I and Pombo A (2020) Evolving methodologies and concepts in 4D nucleome research. Curr Opin Cell Biol 64, 105-111   DOI
73 Fang R, Yu M, Li G et al (2016) Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res 26, 1345-1348   DOI
74 Klein AM, Mazutis L, Akartuna I et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201   DOI
75 Rotem A, Ram O, Shoresh N et al (2015) Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 33, 1165-1172   DOI
76 Ma H, Tu LC, Naseri A et al (2016) Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34, 528-530   DOI
77 Chen B, Zou W, Xu H, Liang Y and Huang B (2018) Efficient labeling and imaging of protein-coding genes in living cells using CRISPR-Tag. Nat Commun 9, 5065   DOI
78 Gu B, Swigut T, Spencley A et al (2018) Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359, 1050-1055   DOI
79 Cusanovich DA, Daza R, Adey A et al (2015) Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910-914   DOI
80 Zheng H and Xie W (2019) The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol 20, 535-550   DOI
81 Kempfer R and Pombo A (2020) Methods for mapping 3D chromosome architecture. Nat Rev Genet 21, 207-226   DOI
82 Beagrie RA, Scialdone A, Schueler M et al (2017) Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519-524   DOI
83 Beliveau BJ, Joyce EF, Apostolopoulos N et al (2012) Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Acad Sci U S A 109, 21301-21306   DOI
84 Bintu B, Mateo LJ, Su JH et al (2018) Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783   DOI
85 Hu M and Wang S (2021) Chromatin tracing: imaging 3D genome and nucleome. Trends Cell Biol 31, 5-8   DOI
86 Bonev B and Cavalli G (2016) Organization and function of the 3D genome. Nat Rev Genet 17, 661-678   DOI
87 Stigler J, Camdere GO, Koshland DE and Greene EC (2016) Single-molecule imaging reveals a collapsed conformational state for DNA-bound cohesin. Cell Rep 15, 988-998   DOI
88 Mateo LJ, Murphy SE, Hafner A, Cinquini IS, Walker CA and Boettiger AN (2019) Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49-54   DOI
89 Terakawa T, Bisht S, Eeftens JM, Dekker C, Haering CH and Greene EC (2017) The condensin complex is a mechanochemical motor that translocates along DNA. Science 358, 672-676   DOI
90 Ganji M, Shaltiel IA, Bisht S et al (2018) Real-time imaging of DNA loop extrusion by condensin. Science 360, 102-105   DOI
91 Davidson IF, Goetz D, Zaczek MP et al (2016) Rapid movement and transcriptional re-localization of human cohesin on DNA. EMBO J 35, 2671-2685   DOI
92 Kanke M, Tahara E, Huis In't Veld PJ and Nishiyama T (2016) Cohesin acetylation and Wapl-Pds5 oppositely regulate translocation of cohesin along DNA. EMBO J 35, 2686-2698   DOI
93 Dixon JR, Gorkin DU and Ren B (2016) Chromatin domains: the unit of chromosome organization. Mol Cell 62, 668-680   DOI
94 Palstra RJ, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F and de Laat W (2003) The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet 35, 190-194   DOI
95 Dekker J, Belmont AS, Guttman M et al (2017) The 4D nucleome project. Nature 549, 219-226   DOI
96 Wang S, Su JH, Beliveau BJ et al (2016) Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598-602   DOI
97 Li G, Liu Y, Zhang Y et al (2019) Joint profiling of DNA methylation and chromatin architecture in single cells. Nat Methods 16, 991-993
98 Lee DS, Luo C, Zhou J et al (2019) Simultaneous profiling of 3D genome structure and DNA methylation in single human cells. Nat Methods 16, 999-1006   DOI
99 Mumbach MR, Satpathy AT, Boyle EA et al (2017) Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat Genet 49, 1602-1612   DOI
100 Pattison JM, Melo SP, Piekos SN et al (2018) Retinoic acid and BMP4 cooperate with p63 to alter chromatin dynamics during surface epithelial commitment. Nat Genet 50, 1658-1665   DOI
101 Mumbach MR, Rubin AJ, Flynn RA et al (2016) HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods 13, 919-922   DOI
102 Rubin AJ, Barajas BC, Furlan-Magaril M et al (2017) Lineage-specific dynamic and pre-established enhancer-promoter contacts cooperate in terminal differentiation. Nat Genet 49, 1522-1528   DOI
103 Kim S and Shendure J (2019) Mechanisms of interplay between transcription factors and the 3D genome. Mol Cell 76, 306-319   DOI
104 Weintraub AS, Li CH, Zamudio AV et al (2017) YY1 Is a structural regulator of enhancer-promoter loops. Cell 171, 1573-1588 e28   DOI
105 Thakur J and Henikoff S (2020) Architectural RNA in chromatin organization. Biochem Soc Trans 48, 1967-1978   DOI
106 Deng W, Rupon JW, Krivega I et al (2014) Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158, 849-860   DOI
107 Kagey MH, Newman JJ, Bilodeau S et al (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430-435   DOI