Browse > Article
http://dx.doi.org/10.5483/BMBRep.2021.54.4.193

Lysophosphatidylcholine aggravates contact hypersensitivity by promoting neutrophil infiltration and IL17 expression  

Song, Mi Hye (Department of Pathology, Hallym University College of Medicine)
Gupta, Anupriya (Department of Pathology, Hallym University College of Medicine)
Kim, Hye One (Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine)
Oh, Kwonik (Department of Pathology, Hallym University College of Medicine)
Publication Information
BMB Reports / v.54, no.4, 2021 , pp. 203-208 More about this Journal
Abstract
Lysophosphatidylcholine (LPC) is a bioactive lysolipid known to contribute to the development of lung allergic diseases. However, it remains unknown whether LPC possesses proinflammatory properties in the skin as well. Here, we investigated this issue by injection of LPC into the murine contact hypersensitivity (CHS) model induced by 2,4-dinitrofluorobenzene (DNFB). LPC increased the expression of IL17, recruited more neutrophils, and eventually aggravated the CHS in the skins. Moreover, the effects of LPC diminished after neutralizing IL17 or depleting neutrophils. Mechanistically, LPC upregulated not only IL17 but also CXCL1 and CXCL2 in a G2A-dependent manner. Taken together, our study demonstrated that the upregulation of LPC could contribute to allergic skin inflammation by increasing IL17 expression and neutrophil recruitment via G2A receptor.
Keywords
Cytokine; Inflammation; Lysophosphatidylcholine; Neutrophil; Skin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhuge Y, Yuan Y, van Breemen R et al (2014) Stimulated bronchial epithelial cells release bioactive lysophosphatidylcholine 16:0, 18:0, and 18:1. Allergy Asthma Immunol Res 6, 66-74   DOI
2 Bansal P, Gaur SN and Arora N (2016) Lysophosphatidylcholine plays critical role in allergic airway disease manifestation. Sci Rep 6, 27430   DOI
3 Yan JJ, Jung JS, Lee JE et al (2004) Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nat Med 10, 161-167   DOI
4 Hong CW, Kim TK, Ham HY et al (2010) Lysophosphatidylcholine increases neutrophil bactericidal activity by increasement of azurophil granule-phagosome fusion via glycine. GlyR alpha 2/TRPM2/p38 MAPK signaling. J Immunol 184, 4401-4413   DOI
5 Lee HJ, Ko HJ, Song DK and Jung YJ (2018) Lysophosphatidylcholine promotes phagosome maturation and regulates inflammatory mediator production by means of the protein kinase A-phosphatidylinositol 3 kinase-p38 mitogenactivated protein kinase signaling pathway during mycobacterium tuberculosis infection in mouse macrophages. Front Immunol 9, 920   DOI
6 Zhu X, Learoyd J, Butt S et al (2007) Regulation of eosinophil adhesion by lysophosphatidylcholine via a non-storeoperated Ca2+ channel. Am J Respir Cell Mol Biol 36, 585-593   DOI
7 Fox LM, Cox DG, Lockridge JL et al (2009) Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLoS Biol 7, e1000228   DOI
8 Maricic I, Girardi E, Zajonc DM and Kumar V (2014) Recognition of lysophosphatidylcholine by type II NKT cells and protection from an inflammatory liver disease. J Immunol 193, 4580-4589   DOI
9 Hasegawa H, Lei J, Matsumoto T, Onishi S, Suemori K and Yasukawa M (2011) Lysophosphatidylcholine increases the suppressive function of human naturally occurring regulatory T cells by means of TGF-beta production. Biochem Biophys Res Commun 415, 526-531   DOI
10 Quinn MT, Parthasarathy S and Steinberg D (1988) Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A 85, 2805-2809   DOI
11 Law SH, Chan ML, Marathe GK, Parveen F, Chen CH and Ke LY (2019) An updated review of lysophosphatidylcholine metabolism in human diseases. Int J Mol Sci 20, 1149   DOI
12 Nielsen MM, Lovato P, MacLeod AS et al (2014) IL-1beta-dependent activation of dendritic epidermal T cells in contact hypersensitivity. J Immunol 192, 2975-2983   DOI
13 Shimizuhira C, Otsuka A, Honda T et al (2014) Natural killer T cells are essential for the development of contact hypersensitivity in BALB/c mice. J Invest Dermatol 134, 2709-2718   DOI
14 Kim HS, Lee MB, Lee D et al (2019) The regulatory B cell-mediated peripheral tolerance maintained by mast cell IL-5 suppresses oxazolone-induced contact hypersensitivity. Sci Adv 5, eaav8152   DOI
15 Liu P, Zhu W, Chen C et al (2020) The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci 247, 117443   DOI
16 Miyamoto M, Prause O, Sjostrand M, Laan M, Lotvall J and Linden A (2003) Endogenous IL-17 as a mediator of neutrophil recruitment caused by endotoxin exposure in mouse airways. J Immunol 170, 4665-4672   DOI
17 Hattori T, Obinata H, Ogawa A et al (2008) G2A plays proinflammatory roles in human keratinocytes under oxidative stress as a receptor for 9-hydroxyoctadecadienoic acid. J Invest Dermatol 128, 1123-1133   DOI
18 Paust S, Gill HS, Wang BZ et al (2010) Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigenspecific memory of haptens and viruses. Nat Immunol 11, 1127-1135   DOI
19 Ye P, Rodriguez FH, Kanaly S et al (2001) Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194, 519-527   DOI
20 Sun D, Novotny M, Bulek K, Liu C, Li X and Hamilton T (2011) Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicingregulatory factor SF2 (ASF). Nat Immunol 12, 853-860   DOI
21 Geha M, Tsokos MG, Bosse RE et al (2017) IL-17A produced by innate lymphoid cells is essential for intestinal ischemia-reperfusion injury. J Immunol 199, 2921-2929   DOI
22 Le LQ, Kabarowski JH, Weng Z et al (2001) Mice lacking the orphan G protein-coupled receptor G2A develop a late-onset autoimmune syndrome. Immunity 14, 561-571   DOI
23 Arbibe L, Koumanov K, Vial D et al (1998) Generation of lyso-phospholipids from surfactant in acute lung injury is mediated by type-II phospholipase A2 and inhibited by a direct surfactant protein A-phospholipase A2 protein interaction. J Clin Invest 102, 1152-1160   DOI
24 Fuchs B, Schiller J, Wagner U, Hantzschel H and Arnold K (2005) The phosphatidylcholine/lysophosphatidylcholine ratio in human plasma is an indicator of the severity of rheumatoid arthritis: investigations by 31P NMR and MALDITOF MS. Clin Biochem 38, 925-933   DOI
25 Kabarowski JH (2009) G2A and LPC: regulatory functions in immunity. Prostaglandins Other Lipid Mediat 89, 73-81   DOI
26 Yoder M, Zhuge Y, Yuan Y et al (2014) Bioactive lysophosphatidylcholine 16:0 and 18:0 are elevated in lungs of asthmatic subjects. Allergy Asthma Immunol Res 6, 61-65   DOI
27 Kim G, Jeong H, Youn H et al (2020) Anti-inflammatory mechanisms of suppressors of cytokine signaling target ROS via NRF-2/thioredoxin induction and inflammasome activation in macrophages. BMB Rep 53, 640-645   DOI
28 Obinata H and Izumi T (2009) G2A as a receptor for oxidized free fatty acids. Prostaglandins Other Lipid Mediat 89, 66-72   DOI
29 Kern K, Schafer SMG, Cohnen J et al (2018) The G2A receptor controls polarization of macrophage by determining their localization within the inflamed tissue. Front Immunol 9, 2261   DOI
30 Berdyshev E, Goleva E, Bronova I et al (2018) Lipid abnormalities in atopic skin are driven by type 2 cytokines. JCI Insight 3, e98006   DOI
31 Li HM, Jang JH, Jung JS et al (2019) G2A protects mice against sepsis by modulating kupffer cell activation: cooperativity with adenosine receptor 2b. J Immunol 202, 527-538   DOI
32 Jiang X, Park CO, Geddes Sweeney J, Yoo MJ, Gaide O and Kupper TS (2017) Dermal gammadelta T cells do not freely re-circulate out of skin and produce IL-17 to promote neutrophil infiltration during primary contact hypersensitivity. PLoS One 12, e0169397   DOI
33 Frasch SC, McNamee EN, Kominsky D et al (2016) G2A signaling dampens colitic inflammation via production of IFN-gamma. J Immunol 197, 1425-1434   DOI
34 Engeman T, Gorbachev AV, Kish DD and Fairchild RL (2004) The intensity of neutrophil infiltration controls the number of antigen-primed CD8 T cells recruited into cutaneous antigen challenge sites. J Leukoc Biol 76, 941-949   DOI
35 Kaplan DH, Igyarto BZ and Gaspari AA (2012) Early immune events in the induction of allergic contact dermatitis. Nat Rev Immunol 12, 114-124   DOI
36 Honda T, Egawa G, Grabbe S and Kabashima K (2013) Update of immune events in the murine contact hypersensitivity model: toward the understanding of allergic contact dermatitis. J Invest Dermatol 133, 303-315   DOI
37 Weber FC, Nemeth T, Csepregi JZ et al (2015) Neutrophils are required for both the sensitization and elicitation phase of contact hypersensitivity. J Exp Med 212, 15-22   DOI
38 Rafei-Shamsabadi DA, van de Poel S, Dorn B et al (2018) Lack of type 2 innate lymphoid cells promotes a type I-driven increased immune response in contact hypersensitivity. J Invest Dermatol 138, 1962-1972   DOI
39 He D, Wu L, Kim HK, Li H, Elmets CA and Xu H (2009) IL-17 and IFN-gamma mediate the elicitation of contact hypersensitivity responses by different mechanisms and both are required for optimal responses. J Immunol 183, 1463-1470   DOI