Browse > Article
http://dx.doi.org/10.5483/BMBRep.2020.53.1.309

Peripheral inflammatory biomarkers in Alzheimer's disease: a brief review  

Park, Jong-Chan (Department of Biomedical Sciences, College of Medicine, Seoul National University)
Han, Sun-Ho (Department of Biomedical Sciences, College of Medicine, Seoul National University)
Mook-Jung, Inhee (Department of Biomedical Sciences, College of Medicine, Seoul National University)
Publication Information
BMB Reports / v.53, no.1, 2020 , pp. 10-19 More about this Journal
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. The AD pathophysiology entails chronic inflammation involving innate immune cells including microglia, astrocytes, and other peripheral blood cells. Inflammatory mediators such as cytokines and complements are also linked to AD pathogenesis. Despite increasing evidence supporting the association between abnormal inflammation and AD, no well-established inflammatory biomarkers are currently available for AD. Since many reports have shown that abnormal inflammation precedes the outbreak of the disease, non-invasive and readily available peripheral inflammatory biomarkers should be considered as possible biomarkers for early diagnosis of AD. In this minireview, we introduce the peripheral biomarker candidates related to abnormal inflammation in AD and discuss their possible molecular mechanisms. Furthermore, we also summarize the current state of inflammatory biomarker research in clinical practice and molecular diagnostics. We believe this review will provide new insights into biomarker candidates for the early diagnosis of AD with systemic relevance to inflammation during AD pathogenesis.
Keywords
Alzheimer's disease; Cytokine; Immune Cell; Inflammation; Peripheral blood biomarker;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Perry VH, Cunningham C and Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7, 161-167   DOI
2 Zhao M, Cribbs DH, Anderson AJ et al (2003) The induction of the TNFalpha death domain signaling pathway in Alzheimer's disease brain. Neurochem Res 28, 307-318   DOI
3 Lue LF, Walker DG and Rogers J (2001) Modeling microglial activation in Alzheimer's disease with human postmortem microglial cultures. Neurobiol Aging 22, 945-956   DOI
4 Janelsins MC, Mastrangelo MA, Park KM et al (2008) Chronic neuron-specific tumor necrosis factor-alpha expression enhances the local inflammatory environment ultimately leading to neuronal death in 3xTg-AD mice. Am J Pathol 173, 1768-1782   DOI
5 McAlpine FE and Tansey MG (2008) Neuroinflammation and tumor necrosis factor signaling in the pathophysiology of Alzheimer's disease. J Inflamm Res 1, 29-39
6 Heneka MT, Carson MJ, El Khoury J et al (2015) Neuroinflammation in Alzheimer's disease. Lancet Neurol 14, 388-405   DOI
7 Han SH, Park JC and Mook-Jung I (2016) Amyloid beta-interacting partners in Alzheimer's disease: From accomplices to possible therapeutic targets. Prog Neurobiol 137, 17-38   DOI
8 Hansen DV, Hanson JE and Sheng M (2018) Microglia in Alzheimer's disease. J Cell Biol 217, 459-472   DOI
9 Cagnin A, Brooks DJ, Kennedy AM et al (2001) In-vivo measurement of activated microglia in dementia. Lancet 358, 461-467   DOI
10 Baik SH, Kang S, Lee W et al (2019) A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer's Disease. Cell Metab 30, 493-507 e496   DOI
11 Yasojima K, Schwab C, McGeer EG and McGeer PL (1999) Up-regulated production and activation of the complement system in Alzheimer's disease brain. Am J Pathol 154, 927-936   DOI
12 Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J and Herrmann N (2010) A meta-analysis of cytokines in Alzheimer's disease. Biol Psychiatry 68, 930-941   DOI
13 Murray CA and Lynch MA (1998) Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age- and stress-induced impairments in long-term potentiation. J Neurosci 18, 2974-2981   DOI
14 Li Y, Liu L, Kang J et al (2000) Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression. J Neurosci 20, 149-155   DOI
15 Han SH, Park JC, Byun MS et al (2019) Blood acetylcholinesterase level is a potential biomarker for the early detection of cerebral amyloid deposition in cognitively normal individuals. Neurobiol Aging 73, 21-29   DOI
16 Su F, Bai F and Zhang Z (2016) Inflammatory Cytokines and Alzheimer's Disease: A Review from the Perspective of Genetic Polymorphisms. Neurosci Bull 32, 469-480   DOI
17 Mrak RE and Griffin WS (2000) Interleukin-1 and the immunogenetics of Alzheimer disease. J Neuropathol Exp Neurol 59, 471-476   DOI
18 Alvarez XA, Franco A, Fernandez-Novoa L and Cacabelos R (1996) Blood levels of histamine, IL-1 beta, and TNF-alpha in patients with mild to moderate Alzheimer disease. Mol Chem Neuropathol 29, 237-252   DOI
19 Licastro F, Pedrini S, Caputo L et al (2000) Increased plasma levels of interleukin-1, interleukin-6 and alpha-1-antichymotrypsin in patients with Alzheimer's disease: peripheral inflammation or signals from the brain? J Neuroimmunol 103, 97-102   DOI
20 De Luigi A, Pizzimenti S, Quadri P et al (2002) Peripheral inflammatory response in Alzheimer's disease and multiinfarct dementia. Neurobiol Dis 11, 308-314   DOI
21 Forlenza OV, Diniz BS, Talib LL et al (2009) Increased serum IL-1beta level in Alzheimer's disease and mild cognitive impairment. Dement Geriatr Cogn Disord 28, 507-512   DOI
22 Brosseron F, Krauthausen M, Kummer M and Heneka MT (2014) Body fluid cytokine levels in mild cognitive impairment and Alzheimer's disease: a comparative overview. Mol Neurobiol 50, 534-544   DOI
23 Tarkowski E, Blennow K, Wallin A and Tarkowski A (1999) Intracerebral production of tumor necrosis factor-alpha, a local neuroprotective agent, in Alzheimer disease and vascular dementia. J Clin Immunol 19, 223-230   DOI
24 Magaki S, Mueller C, Dickson C and Kirsch W (2007) Increased production of inflammatory cytokines in mild cognitive impairment. Exp Gerontol 42, 233-240   DOI
25 Bruunsgaard H, Andersen-Ranberg K, Jeune B, Pedersen AN, Skinhoj P and Pedersen BK (1999) A high plasma concentration of TNF-alpha is associated with dementia in centenarians. J Gerontol A Biol Sci Med Sci 54, M357-364   DOI
26 Fillit H, Ding WH, Buee L et al (1991) Elevated circulating tumor necrosis factor levels in Alzheimer's disease. Neurosci Lett 129, 318-320   DOI
27 Aliberti J, Reis e Sousa C, Schito M et al (2000) CCR5 provides a signal for microbial induced production of IL-12 by CD8 alpha+ dendritic cells. Nat Immunol 1, 83-87   DOI
28 Schulz O, Edwards AD, Schito M et al (2000) CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity 13, 453-462   DOI
29 Rentzos M, Paraskevas GP, Kapaki E et al (2006) Interleukin-12 is reduced in cerebrospinal fluid of patients with Alzheimer's disease and frontotemporal dementia. J Neurol Sci 249, 110-114   DOI
30 Chang HD and Radbruch A (2007) The pro- and anti-inflammatory potential of interleukin-12. Ann N Y Acad Sci 1109, 40-46   DOI
31 Vom Berg J, Prokop S, Miller KR et al (2012) Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease-like pathology and cognitive decline. Nat Med 18, 1812-1819   DOI
32 Correa JD, Starling D, Teixeira AL, Caramelli P and Silva TA (2011) Chemokines in CSF of Alzheimer's disease patients. Arq Neuropsiquiatr 69, 455-459   DOI
33 Sui X, Liu J and Yang X (2014) Cerebrospinal fluid biomarkers of Alzheimer's disease. Neurosci Bull 30, 233-242   DOI
34 Baik SH, Cha MY, Hyun YM et al (2014) Migration of neutrophils targeting amyloid plaques in Alzheimer's disease mouse model. Neurobiol Aging 35, 1286-1292   DOI
35 Kim MS, Kim Y, Choi H et al (2020) Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer's disease animal model. Gut 69, 283-294   DOI
36 Akiyama H, Barger S, Barnum S et al (2000) Inflammation and Alzheimer's disease. Neurobiol Aging 21, 383-421   DOI
37 Wilson CJ, Finch CE and Cohen HJ (2002) Cytokines and cognition--the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc 50, 2041-2056   DOI
38 Solfrizzi V, D'Introno A, Colacicco AM et al (2006) Circulating biomarkers of cognitive decline and dementia. Clin Chim Acta 364, 91-112   DOI
39 Winston CN, Goetzl EJ, Schwartz JB, Elahi FM and Rissman RA (2019) Complement protein levels in plasma astrocyte-derived exosomes are abnormal in conversion from mild cognitive impairment to Alzheimer's disease dementia. Alzheimers Dement (Amst) 11, 61-66   DOI
40 Jongbloed W, van Dijk KD, Mulder SD et al (2015) Clusterin Levels in Plasma Predict Cognitive Decline and Progression to Alzheimer's Disease. J Alzheimers Dis 46, 1103-1110   DOI
41 Daborg J, Andreasson U, Pekna M et al (2012) Cerebrospinal fluid levels of complement proteins C3, C4 and CR1 in Alzheimer's disease. J Neural Transm (Vienna) 119, 789-797   DOI
42 Bennett S, Grant M, Creese AJ et al (2012) Plasma levels of complement 4a protein are increased in Alzheimer's disease. Alzheimer Dis Assoc Disord 26, 329-334   DOI
43 Yarchoan M, Louneva N, Xie SX et al (2013) Association of plasma C-reactive protein levels with the diagnosis of Alzheimer's disease. J Neurol Sci 333, 9-12   DOI
44 Locascio JJ, Fukumoto H, Yap L et al (2008) Plasma amyloid beta-protein and C-reactive protein in relation to the rate of progression of Alzheimer disease. Arch Neurol 65, 776-785   DOI
45 Watanabe Y, Kitamura K, Nakamura K et al (2016) Elevated C-Reactive Protein Is Associated with Cognitive Decline in Outpatients of a General Hospital: The Project in Sado for Total Health (PROST). Dement Geriatr Cogn Dis Extra 6, 10-19   DOI
46 Motta M, Imbesi R, Di Rosa M, Stivala F and Malaguarnera L (2007) Altered plasma cytokine levels in Alzheimer's disease: correlation with the disease progression. Immunol Lett 114, 46-51   DOI
47 Metcalfe MJ and Figueiredo-Pereira ME (2010) Relationship between tau pathology and neuroinflammation in Alzheimer's disease. Mt Sinai J Med 77, 50-58   DOI
48 Holmes C, Cunningham C, Zotova E et al (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73, 768-774   DOI
49 Leung R, Proitsi P, Simmons A et al (2013) Inflammatory proteins in plasma are associated with severity of Alzheimer's disease. PLoS One 8, e64971   DOI
50 Angelopoulos P, Agouridaki H, Vaiopoulos H et al (2008) Cytokines in Alzheimer's disease and vascular dementia. Int J Neurosci 118, 1659-1672   DOI
51 Italiani P, Puxeddu I, Napoletano S et al (2018) Circulating levels of IL-1 family cytokines and receptors in Alzheimer's disease: new markers of disease progression? J Neuroinflammation 15, 342   DOI
52 Lanzrein AS, Johnston CM, Perry VH, Jobst KA, King EM and Smith AD (1998) Longitudinal study of inflammatory factors in serum, cerebrospinal fluid, and brain tissue in Alzheimer disease: interleukin-1beta, interleukin-6, interleukin-1 receptor antagonist, tumor necrosis factoralpha, the soluble tumor necrosis factor receptors I and II, and alpha1-antichymotrypsin. Alzheimer Dis Assoc Disord 12, 215-227   DOI
53 Pirttila T, Mehta PD, Frey H and Wisniewski HM (1994) Alpha 1-antichymotrypsin and IL-1 beta are not increased in CSF or serum in Alzheimer's disease. Neurobiol Aging 15, 313-317   DOI
54 Huell M, Strauss S, Volk B, Berger M and Bauer J (1995) Interleukin-6 is present in early stages of plaque formation and is restricted to the brains of Alzheimer's disease patients. Acta Neuropathol 89, 544-551   DOI
55 Vintimilla R, Hall J, Johnson L and O'Bryant S (2019) The relationship of CRP and cognition in cognitively normal older Mexican Americans: A cross-sectional study of the HABLE cohort. Medicine (Baltimore) 98, e15605   DOI
56 Park JC, Han SH, Cho HJ et al (2017) Chemically treated plasma Abeta is a potential blood-based biomarker for screening cerebral amyloid deposition. Alzheimers Res Ther 9, 20   DOI
57 Yasutake C, Kuroda K, Yanagawa T, Okamura T and Yoneda H (2006) Serum BDNF, TNF-alpha and IL-1beta levels in dementia patients: comparison between Alzheimer's disease and vascular dementia. Eur Arch Psychiatry Clin Neurosci 256, 402-406   DOI
58 Bonotis K, Krikki E, Holeva V, Aggouridaki C, Costa V and Baloyannis S (2008) Systemic immune aberrations in Alzheimer's disease patients. J Neuroimmunol 193, 183-187   DOI
59 Bauer J, Strauss S, Schreiter-Gasser U et al (1991) Interleukin-6 and alpha-2-macroglobulin indicate an acute-phase state in Alzheimer's disease cortices. FEBS Lett 285, 111-114   DOI
60 Town T, Vendrame M, Patel A et al (2002) Reduced Th1 and enhanced Th2 immunity after immunization with Alzheimer's beta-amyloid(1-42). J Neuroimmunol 132, 49-59   DOI
61 te Velde AA, Huijbens RJ, Heije K, de Vries JE and Figdor CG (1990) Interleukin-4 (IL-4) inhibits secretion of IL-1 beta, tumor necrosis factor alpha, and IL-6 by human monocytes. Blood 76, 1392-1397   DOI
62 Gambi F, Reale M, Iarlori C et al (2004) Alzheimer patients treated with an AchE inhibitor show higher IL-4 and lower IL-1 beta levels and expression in peripheral blood mononuclear cells. J Clin Psychopharmacol 24, 314-321   DOI
63 Lugaresi A, Di Iorio A, Iarlori C et al (2004) IL-4 in vitro production is upregulated in Alzheimer's disease patients treated with acetylcholinesterase inhibitors. Exp Gerontol 39, 653-657   DOI
64 Strle K, Zhou JH, Shen WH et al (2001) Interleukin-10 in the brain. Crit Rev Immunol 21, 427-449
65 Bonfili L, Cecarini V, Berardi S et al (2017) Microbiota modulation counteracts Alzheimer's disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 7, 2426   DOI
66 Fung TC, Olson CA and Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20, 145-155   DOI
67 Kau AL, Ahern PP, Griffin NW, Goodman AL and Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474, 327-336   DOI
68 Kowalski K and Mulak A (2019) Brain-Gut-Microbiota Axis in Alzheimer's Disease. J Neurogastroenterol Motil 25, 48-60   DOI
69 Arosio B, D'Addario C, Gussago C et al (2014) Peripheral blood mononuclear cells as a laboratory to study dementia in the elderly. Biomed Res Int 2014, 169203   DOI
70 Bradt BM, Kolb WP and Cooper NR (1998) Complement-dependent proinflammatory properties of the Alzheimer's disease beta-peptide. J Exp Med 188, 431-438   DOI
71 Hakobyan S, Harding K, Aiyaz M et al (2016) Complement Biomarkers as Predictors of Disease Progression in Alzheimer's Disease. J Alzheimers Dis 54, 707-716   DOI
72 Weinstein G, Beiser AS, Preis SR et al (2016) Plasma clusterin levels and risk of dementia, Alzheimer's disease, and stroke. Alzheimers Dement (Amst) 3, 103-109   DOI
73 Angelis P, Scharf S, Mander A, Vajda F and Christophidis N (1998) Serum interleukin-6 and interleukin-6 soluble receptor in Alzheimer's disease. Neurosci Lett 244, 106-108   DOI
74 Sun YX, Minthon L, Wallmark A, Warkentin S, Blennow K and Janciauskiene S (2003) Inflammatory markers in matched plasma and cerebrospinal fluid from patients with Alzheimer's disease. Dement Geriatr Cogn Disord 16, 136-144   DOI
75 Wu YY, Hsu JL, Wang HC, Wu SJ, Hong CJ and Cheng IH (2015) Alterations of the Neuroinflammatory Markers IL-6 and TRAIL in Alzheimer's Disease. Dement Geriatr Cogn Dis Extra 5, 424-434   DOI
76 Singh VK and Guthikonda P (1997) Circulating cytokines in Alzheimer's disease. J Psychiatr Res 31, 657-660   DOI
77 van Duijn CM, Hofman A and Nagelkerken L (1990) Serum levels of interleukin-6 are not elevated in patients with Alzheimer's disease. Neurosci Lett 108, 350-354   DOI
78 Haure-Mirande JV, Wang M, Audrain M et al (2019) Integrative approach to sporadic Alzheimer's disease: deficiency of TYROBP in cerebral Abeta amyloidosis mouse normalizes clinical phenotype and complement subnetwork molecular pathology without reducing Abeta burden. Mol Psychiatry 24, 431-446   DOI
79 Williams MA, Haughton D, Stevenson M, Craig D, Passmore AP and Silvestri G (2015) Plasma Complement factor H in Alzheimer's Disease. J Alzheimers Dis 45, 369-372   DOI
80 Thambisetty M, Simmons A, Hye A et al (2011) Plasma biomarkers of brain atrophy in Alzheimer's disease. PLoS One 6, e28527   DOI
81 Efthymiou AG and Goate AM (2017) Late onset Alzheimer's disease genetics implicates microglial pathways in disease risk. Mol Neurodegener 12, 43   DOI
82 Lambert JC, Heath S, Even G et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 41, 1094-1099   DOI
83 Belbin O, Dunn JL, Chappell S et al (2008) A SNP in the ACT gene associated with astrocytosis and rapid cognitive decline in AD. Neurobiol Aging 29, 1167-1176   DOI
84 Toral-Rios D, Franco-Bocanegra D, Rosas-Carrasco O et al (2015) Evaluation of inflammation-related genes polymorphisms in Mexican with Alzheimer's disease: a pilot study. Front Cell Neurosci 9, 148   DOI
85 Lee KS, Chung JH, Choi TK, Suh SY, Oh BH and Hong CH (2009) Peripheral cytokines and chemokines in Alzheimer's disease. Dement Geriatr Cogn Disord 28, 281-287   DOI
86 Garlind A, Brauner A, Hojeberg B, Basun H and Schultzberg M (1999) Soluble interleukin-1 receptor type II levels are elevated in cerebrospinal fluid in Alzheimer's disease patients. Brain Res 826, 112-116   DOI
87 Tarkowski E, Liljeroth AM, Minthon L, Tarkowski A, Wallin A and Blennow K (2003) Cerebral pattern of proand anti-inflammatory cytokines in dementias. Brain Res Bull 61, 255-260   DOI
88 Richartz E, Stransky E, Batra A et al (2005) Decline of immune responsiveness: a pathogenetic factor in Alzheimer's disease? J Psychiatr Res 39, 535-543   DOI
89 Ziegler-Heitbrock L (2007) The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol 81, 584-592   DOI
90 Ciccocioppo F, Lanuti P, Pierdomenico L et al (2019) The Characterization of Regulatory T-Cell Profiles in Alzheimer's Disease and Multiple Sclerosis. Sci Rep 9, 8788   DOI
91 Rezai-Zadeh K, Gate D, Szekely CA and Town T (2009) Can peripheral leukocytes be used as Alzheimer's disease biomarkers? Expert Rev Neurother 9, 1623-1633   DOI
92 Chen SH, Bu XL, Jin WS et al (2017) Altered peripheral profile of blood cells in Alzheimer disease: A hospitalbased case-control study. Medicine (Baltimore) 96, e6843   DOI
93 Lunnon K, Ibrahim Z, Proitsi P et al (2012) Mitochondrial dysfunction and immune activation are detectable in early Alzheimer's disease blood. J Alzheimers Dis 30, 685-710   DOI
94 Naert G and Rivest S (2013) A deficiency in CCR2+ monocytes: the hidden side of Alzheimer's disease. J Mol Cell Biol 5, 284-293   DOI
95 Kamboh MI, Demirci FY, Wang X et al (2012) Genome-wide association study of Alzheimer's disease. Transl Psychiatry 2, e117   DOI
96 Richartz-Salzburger E, Batra A, Stransky E et al (2007) Altered lymphocyte distribution in Alzheimer's disease. J Psychiatr Res 41, 174-178   DOI
97 Aiyaz M, Lupton MK, Proitsi P, Powell JF and Lovestone S (2012) Complement activation as a biomarker for Alzheimer's disease. Immunobiology 217, 204-215   DOI
98 Kolev MV, Ruseva MM, Harris CL, Morgan BP and Donev RM (2009) Implication of complement system and its regulators in Alzheimer's disease. Curr Neuropharmacol 7, 1-8   DOI
99 Kok EH, Luoto T, Haikonen S, Goebeler S, Haapasalo H and Karhunen PJ (2011) CLU, CR1 and PICALM genes associate with Alzheimer's-related senile plaques. Alzheimers Res Ther 3, 12   DOI
100 Dionisio-Santos DA, Olschowka JA and O'Banion MK (2019) Exploiting microglial and peripheral immune cell crosstalk to treat Alzheimer's disease. J Neuroinflammation 16, 74   DOI
101 Dinarello CA and Wolff SM (1993) The role of interleukin-1 in disease. N Engl J Med 328, 106-113   DOI
102 Besedovsky H, del Rey A, Sorkin E and Dinarello CA (1986) Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 233, 652-654   DOI
103 Shaftel SS, Griffin WS and O'Banion MK (2008) The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation 5, 7   DOI
104 Nicklin MJ, Weith A and Duff GW (1994) A physical map of the region encompassing the human interleukin-1 alpha, interleukin-1 beta, and interleukin-1 receptor antagonist genes. Genomics 19, 382-384   DOI
105 Schneider H, Pitossi F, Balschun D, Wagner A, del Rey A and Besedovsky HO (1998) A neuromodulatory role of interleukin-1beta in the hippocampus. Proc Natl Acad Sci U S A 95, 7778-7783   DOI
106 Morgan BP (2018) Complement in the pathogenesis of Alzheimer's disease. Semin Immunopathol 40, 113-124   DOI
107 Allan SM, Tyrrell PJ and Rothwell NJ (2005) Interleukin-1 and neuronal injury. Nat Rev Immunol 5, 629-640   DOI
108 Patel HC, Boutin H and Allan SM (2003) Interleukin-1 in the brain: mechanisms of action in acute neurodegeneration. Ann N Y Acad Sci 992, 39-47   DOI
109 Griffin WS, Stanley LC, Ling C et al (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 86, 7611-7615   DOI
110 Sheng JG, Jones RA, Zhou XQ et al (2001) Interleukin-1 promotion of MAPK-p38 overexpression in experimental animals and in Alzheimer's disease: potential significance for tau protein phosphorylation. Neurochem Int 39, 341-348   DOI
111 Yamada K, Furusawa S, Saito K et al (1995) Concurrent use of granulocyte colony-stimulating factor with low-dose cytosine arabinoside and aclarubicin for previously treated acute myelogenous leukemia: a pilot study. Leukemia 9, 10-14
112 Papassotiropoulos A, Bagli M, Jessen F et al (1999) A genetic variation of the inflammatory cytokine interleukin-6 delays the initial onset and reduces the risk for sporadic Alzheimer's disease. Ann Neurol 45, 666-668   DOI
113 Grimaldi LM, Casadei VM, Ferri C et al (2000) Association of early-onset Alzheimer's disease with an interleukin-1alpha gene polymorphism. Ann Neurol 47, 361-365   DOI
114 Nicoll JA, Mrak RE, Graham DI et al (2000) Association of interleukin-1 gene polymorphisms with Alzheimer's disease. Ann Neurol 47, 365-368   DOI
115 Tan L, Wang HF, Tan MS et al (2016) Effect of CLU genetic variants on cerebrospinal fluid and neuroimaging markers in healthy, mild cognitive impairment and Alzheimer's disease cohorts. Sci Rep 6, 26027   DOI
116 Jin C, Li W, Yuan J, Xu W and Cheng Z (2012) Association of the CR1 polymorphism with late-onset Alzheimer's disease in Chinese Han populations: a meta-analysis. Neurosci Lett 527, 46-49   DOI
117 Liu G, Wang H, Liu J et al (2014) The CLU gene rs11136000 variant is significantly associated with Alzheimer's disease in Caucasian and Asian populations. Neuromolecular Med 16, 52-60   DOI
118 Zhu R, Liu X and He Z (2018) Association between CLU gene rs11136000 polymorphism and Alzheimer's disease: an updated meta-analysis. Neurol Sci 39, 679-689   DOI
119 Xing YY, Yu JT, Cui WZ et al (2012) Blood clusterin levels, rs9331888 polymorphism, and the risk of Alzheimer's disease. J Alzheimers Dis 29, 515-519   DOI
120 Zhou J, Fonseca MI, Pisalyaput K and Tenner AJ (2008) Complement C3 and C4 expression in C1q sufficient and deficient mouse models of Alzheimer's disease. J Neurochem 106, 2080-2092   DOI
121 Fonseca MI, Chu S, Pierce AL et al (2016) Analysis of the Putative Role of CR1 in Alzheimer's Disease: Genetic Association, Expression and Function. PLoS One 11, e0149792   DOI
122 Foster EM, Dangla-Valls A, Lovestone S, Ribe EM and Buckley NJ (2019) Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Front Neurosci 13, 164   DOI
123 Thambisetty M, Simmons A, Velayudhan L et al (2010) Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry 67, 739-748   DOI