Browse > Article
http://dx.doi.org/10.5483/BMBRep.2020.53.12.203

Substrate specificity of bacterial endoribonuclease toxins  

Han, Yoontak (Department of Life Sciences, Korea University)
Lee, Eun-Jin (Department of Life Sciences, Korea University)
Publication Information
BMB Reports / v.53, no.12, 2020 , pp. 611-621 More about this Journal
Abstract
Bacterial endoribonuclease toxins belong to a protein family that inhibits bacterial growth by degrading mRNA or rRNA sequences. The toxin genes are organized in pairs with its cognate antitoxins in the chromosome and thus the activities of the toxins are antagonized by antitoxin proteins or RNAs during active translation. In response to a variety of cellular stresses, the endoribonuclease toxins appear to be released from antitoxin molecules via proteolytic cleavage of antitoxin proteins or preferential degradation of antitoxin RNAs and cleave a diverse range of mRNA or rRNA sequences in a sequence-specific or codon-specific manner, resulting in various biological phenomena such as antibiotic tolerance and persister cell formation. Given that substrate specificity of each endoribonuclease toxin is determined by its structure and the composition of active site residues, we summarize the biology, structure, and substrate specificity of the updated bacterial endoribonuclease toxins.
Keywords
Endoribonuclease; Persister cells; Recognition sequence; Ribosome; Toxin-antitoxin system;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kamada K, Hanaoka F and Burley SK (2003) Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxin recognition. Mol Cell 11, 875-884   DOI
2 Pandey DP and Gerdes K (2005) Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33, 966-976   DOI
3 Zhang Y and Inouye M (2009) The inhibitory mechanism of protein synthesis by YoeB, an Escherichia coli toxin. J Biol Chem 284, 6627-6638   DOI
4 Christensen SK, Mikkelsen M, Pedersen K and Gerdes K (2001) RelE, a global inhibitor of translation, is activated during nutritional stress. Proc Natl Acad Sci U S A 98, 14328-14333   DOI
5 Maisonneuve E, Castro-Camargo M and Gerdes K (2013) (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 154, 1140-1150   DOI
6 Neubauer C, Gao YG, Andersen KR et al (2009) The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE. Cell 139, 1084-1095   DOI
7 Overgaard M, Borch J and Gerdes K (2009) RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB. J Mol Biol 394, 183-196   DOI
8 Boggild A, Sofos N, Andersen KR et al (2012) The crystal structure of the intact E. coli RelBE toxin-antitoxin complex provides the structural basis for conditional cooperativity. Structure 20, 1641-1648   DOI
9 Hwang JY and Buskirk AR (2017) A ribosome profiling study of mRNA cleavage by the endonuclease RelE. Nucleic Acids Res 45, 327-336   DOI
10 Christensen SK and Gerdes K (2003) RelE toxins from bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Mol Microbiol 48, 1389-1400   DOI
11 Christensen SK, Pedersen K, Hansen FG and Gerdes K (2003) Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. J Mol Biol 332, 809-819   DOI
12 Condon C (2006) Shutdown decay of mRNA. Mol Microbiol 61, 573-583   DOI
13 Pontes MH and Groisman EA (2019) Slow growth determines nonheritable antibiotic resistance in Salmonella enterica. Sci Signal 12, eaax3938   DOI
14 Norton JP and Mulvey MA (2012) Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli. PLoS Pathog 8, e1002954   DOI
15 Wang X and Wood TK (2011) Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl Environ Microbiol 77, 5577-5583   DOI
16 Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA and Holden DW (2014) Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343, 204-208   DOI
17 Harms A, Fino C, Sorensen MA, Semsey S and Gerdes K (2017) Prophages and growth dynamics confound experimental results with antibiotic-tolerant persister cells. mBio 8, e01964-17
18 Zhu L, Inoue K, Yoshizumi S et al (2009) Staphylococcus aureus MazF specifically cleaves a pentad sequence, UACAU, which is unusually abundant in the mRNA for pathogenic adhesive factor SraP. J Bacteriol 191, 3248-3255   DOI
19 Feng S, Chen Y, Kamada K et al (2013) YoeB-ribosome structure: a canonical RNase that requires the ribosome for its specific activity. Nucleic Acids Res 41, 9549-9556   DOI
20 Christensen SK, Maenhaut-Michel G, Mine N, Gottesman S, Gerdes K and Van Melderen L (2004) Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: involvement of the yefM-yoeB toxin-antitoxin system. Mol Microbiol 51, 1705-1717   DOI
21 Pavelich IJ, Maehigashi T, Hoffer ED, Ruangprasert A, Miles SJ and Dunham CM (2019) Monomeric YoeB toxin retains RNase activity but adopts an obligate dimeric form for thermal stability. Nucleic Acids Res 47, 10400-10413   DOI
22 Christensen-Dalsgaard M and Gerdes K (2008) Translation affects YoeB and MazF messenger RNA interferase activities by different mechanisms. Nucleic Acids Res 36, 6472-6481   DOI
23 McKenzie GJ, Magner DB, Lee PL and Rosenberg SM (2003) The dinB operon and spontaneous mutation in Escherichia coli. J Bacteriol 185, 3972-3977   DOI
24 Zhang Y, Yamaguchi Y and Inouye M (2009) Characterization of YafO, an Escherichia coli toxin. J Biol Chem 284, 25522-25531   DOI
25 Motiejunaite R, Armalyte J, Markuckas A and Suziedeliene E (2007) Escherichia coli dinJ-yafQ genes act as a toxin-antitoxin module. FEMS Microbiol Lett 268, 112-119   DOI
26 Prysak MH, Mozdzierz CJ, Cook AM et al (2009) Bacterial toxin YafQ is an endoribonuclease that associates with the ribosome and blocks translation elongation through sequence-specific and frame-dependent mRNA cleavage. Mol Microbiol 71, 1071-1087   DOI
27 Maehigashi T, Ruangprasert A, Miles SJ and Dunham CM (2015) Molecular basis of ribosome recognition and mRNA hydrolysis by the E. coli YafQ toxin. Nucleic Acids Res 43, 8002-8012   DOI
28 Hurley JM and Woychik NA (2009) Bacterial toxin HigB associates with ribosomes and mediates translation-dependent mRNA cleavage at A-rich sites. J Biol Chem 284, 18605-18613   DOI
29 Kolodkin-Gal I, Verdiger R, Shlosberg-Fedida A and Engelberg-Kulka H (2009) A differential effect of E. coli toxin-antitoxin systems on cell death in liquid media and biofilm formation. PLoS One 4, e6785   DOI
30 Tian QB, Ohnishi M, Tabuchi A and Terawaki Y (1996) A new plasmid-encoded proteic killer gene system: cloning, sequencing, and analyzing hig locus of plasmid Rts1. Biochem Biophys Res Commun 220, 280-284   DOI
31 Schureck MA, Dunkle JA, Maehigashi T, Miles SJ and Dunham CM (2015) Defining the mRNA recognition signature of a bacterial toxin protein. Proc Natl Acad Sci U S A 112, 13862-13867   DOI
32 Schureck MA, Repack A, Miles SJ, Marquez J and Dunham CM (2016) Mechanism of endonuclease cleavage by the HigB toxin. Nucleic Acids Res 44, 7944-7953   DOI
33 Coles M, Djuranovic S, Soding J et al (2005) AbrB-like transcription factors assume a swapped hairpin fold that is evolutionarily related to double-psi beta barrels. Structure 13, 919-928   DOI
34 Schmidt O, Schuenemann VJ, Hand NJ et al (2007) prlF and yhaV encode a new toxin-antitoxin system in Escherichia coli. J Mol Biol 372, 894-905   DOI
35 Choi W, Yamaguchi Y, Lee JW et al (2017) Translation-dependent mRNA cleavage by YhaV in Escherichia coli. FEBS Lett 591, 1853-1861   DOI
36 Snyder WB and Silhavy TJ (1992) Enhanced export of beta-galactosidase fusion proteins in prlF mutants is Lon dependent. J Bacteriol 174, 5661-5668   DOI
37 Park JH, Yamaguchi Y and Inouye M (2011) Bacillus subtilis MazF-bs (EndoA) is a UACAU-specific mRNA interferase. FEBS Lett 585, 2526-2532   DOI
38 Aizenman E, Engelberg-Kulka H and Glaser G (1996) An Escherichia coli chromosomal "addiction module" regulated by guanosine [corrected] 3',5'-bispyrophosphate: a model for programmed bacterial cell death. Proc Natl Acad Sci U S A 93, 6059-6063   DOI
39 Vesper O, Amitai S, Belitsky M et al (2011) Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell 147, 147-157   DOI
40 Culviner PH and Laub MT (2018) Global analysis of the E. coli toxin mazF reveals widespread cleavage of mRNA and the inhibition of rRNA maturation and ribosome biogenesis. Mol Cell 70, 868-880 e810   DOI
41 Miyamoto T, Ota Y, Yokota A, Suyama T, Tsuneda S and Noda N (2017) Characterization of a Deinococcus radiodurans MazF: A UACA-specific RNA endoribonuclease. Microbiologyopen 6, e00501   DOI
42 Nariya H and Inouye M (2008) MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell 132, 55-66   DOI
43 Tiwari P, Arora G, Singh M, Kidwai S, Narayan OP and Singh R (2015) MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nat Commun 6, 6059   DOI
44 Hazan R and Engelberg-Kulka H (2004) Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol Genet Genomics 272, 227-234   DOI
45 Zhang J, Zhang Y, Zhu L, Suzuki M and Inouye M (2004) Interference of mRNA function by sequence-specific endoribonuclease PemK. J Biol Chem 279, 20678-20684   DOI
46 Tripathi A, Dewan PC, Siddique SA and Varadarajan R (2014) MazF-induced growth inhibition and persister generation in Escherichia coli. J Biol Chem 289, 4191-4205   DOI
47 Masuda Y, Miyakawa K, Nishimura Y and Ohtsubo E (1993) chpA and chpB, Escherichia coli chromosomal homologs of the pem locus responsible for stable maintenance of plasmid R100. J Bacteriol 175, 6850-6856   DOI
48 Zhang Y, Zhu L, Zhang J and Inouye M (2005) Characterization of ChpBK, an mRNA interferase from Escherichia coli. J Biol Chem 280, 26080-26088   DOI
49 Tsuchimoto S, Nishimura Y and Ohtsubo E (1992) The stable maintenance system pem of plasmid R100: degradation of PemI protein may allow PemK protein to inhibit cell growth. J Bacteriol 174, 4205-4211   DOI
50 Tsuchimoto S, Ohtsubo H and Ohtsubo E (1988) Two genes, pemK and pemI, responsible for stable maintenance of resistance plasmid R100. J Bacteriol 170, 1461-1466   DOI
51 Kasari V, Kurg K, Margus T, Tenson T and Kaldalu N (2010) The Escherichia coli mqsR and ygiT genes encode a new toxin-antitoxin pair. J Bacteriol 192, 2908-2919   DOI
52 Yamaguchi Y, Park JH and Inouye M (2009) MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J Biol Chem 284, 28746-28753   DOI
53 Brown BL, Grigoriu S, Kim Y et al (2009) Three dimensional structure of the MqsR:MqsA complex: a novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties. PLoS Pathog 5, e1000706   DOI
54 Fraikin N, Rousseau CJ, Goeders N and Van Melderen L (2019) Reassessing the role of the type II MqsRA toxin-antitoxin system in stress response and biofilm formation: mqsA is transcriptionally uncoupled from mqsR. mBio 10, e02678-19
55 Gonzalez Barrios AF, Zuo R, Hashimoto Y, Yang L, Bentley WE and Wood TK (2006) Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 188, 305-316   DOI
56 Kim Y and Wood TK (2010) Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem Biophys Res Commun 391, 209-213   DOI
57 Kawano M, Aravind L and Storz G (2007) An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol Microbiol 64, 738-754   DOI
58 Mhlanga-Mutangadura T, Morlin G, Smith AL, Eisenstark A and Golomb M (1998) Evolution of the major pilus gene cluster of Haemophilus influenzae. J Bacteriol 180, 4693-4703   DOI
59 Makarova KS, Grishin NV and Koonin EV (2006) The HicAB cassette, a putative novel, RNA-targeting toxin-antitoxin system in archaea and bacteria. Bioinformatics 22, 2581-2584   DOI
60 Turnbull KJ and Gerdes K (2017) HicA toxin of Escherichia coli derepresses hicAB transcription to selectively produce HicB antitoxin. Mol Microbiol 104, 781-792   DOI
61 Germain E, Castro-Roa D, Zenkin N and Gerdes K (2013) Molecular mechanism of bacterial persistence by HipA. Mol Cell 52, 248-254   DOI
62 Christensen-Dalsgaard M, Jorgensen MG and Gerdes K (2010) Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Mol Microbiol 75, 333-348   DOI
63 Winther KS, Brodersen DE, Brown AK and Gerdes K (2013) VapC20 of Mycobacterium tuberculosis cleaves the sarcin-ricin loop of 23S rRNA. Nat Commun 4, 2796   DOI
64 Winther KS and Gerdes K (2011) Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. Proc Natl Acad Sci U S A 108, 7403-7407   DOI
65 Castro-Roa D, Garcia-Pino A, De Gieter S, van Nuland NAJ, Loris R and Zenkin N (2013) The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu. Nat Chem Biol 9, 811-817   DOI
66 Belanger M and Moineau S (2015) Mutational analysis of the antitoxin in the lactococcal Type III toxin-antitoxin system AbiQ. Appl Environ Microbiol 81, 3848-3855   DOI
67 Emond E, Dion E, Walker SA, Vedamuthu ER, Kondo JK and Moineau S (1998) AbiQ, an abortive infection mechanism from Lactococcus lactis. Appl Environ Microbiol 64, 4748-4756   DOI
68 Forde A and Fitzgerald GF (1999) Bacteriophage defence systems in lactic acid bacteria. Antonie Van Leeuwenhoek 76, 89-113   DOI
69 Samson JE, Spinelli S, Cambillau C and Moineau S (2013) Structure and activity of AbiQ, a lactococcal endoribonuclease belonging to the type III toxin-antitoxin system. Mol Microbiol 87, 756-768   DOI
70 Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS and Salmond GP (2009) The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci U S A 106, 894-899   DOI
71 Short FL, Pei XY, Blower TR et al (2013) Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot. Proc Natl Acad Sci U S A 110, E241-249   DOI
72 Klumpp S, Scott M, Pedersen S and Hwa T (2013) Molecular crowding limits translation and cell growth. Proc Natl Acad Sci U S A 110, 16754-16759   DOI
73 Cruz JW, Rothenbacher FP, Maehigashi T, Lane WS, Dunham CM and Woychik NA (2014) Doc toxin is a kinase that inactivates elongation factor Tu. J Biol Chem 289, 7788-7798   DOI
74 Cheverton AM, Gollan B, Przydacz M et al (2016) A Salmonella toxin promotes persister formation through acetylation of tRNA. Mol Cell 63, 86-96   DOI
75 Wilcox B, Osterman I, Serebryakova M et al (2018) Escherichia coli ItaT is a type II toxin that inhibits translation by acetylating isoleucyl-tRNAIle. Nucleic Acids Res 46, 7873-7885   DOI
76 Zhu M and Dai X (2018) On the intrinsic constraint of bacterial growth rate: M. tuberculosis's view of the protein translation capacity. Crit Rev Microbiol 44, 455-464   DOI
77 Harms A, Brodersen DE, Mitarai N and Gerdes K (2018) Toxins, Targets, and Triggers: An overview of toxin-antitoxin biology. Mol Cell 70, 768-784   DOI
78 Blower TR, Pei XY, Short FL et al (2011) A processed noncoding RNA regulates an altruistic bacterial antiviral system. Nat Struct Mol Biol 18, 185-190   DOI
79 Muthuramalingam M, White JC and Bourne CR (2016) Toxin-antitoxin modules are pliable switches activated by multiple protease pathways. Toxins (Basel) 8, 214   DOI
80 Nierlich DP (1978) Regulation of bacterial growth, RNA, and protein synthesis. Annu Rev Microbiol 32, 393-432   DOI
81 Page R and Peti W (2016) Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol 12, 208-214   DOI
82 Zhang Y, Zhang J, Hoeflich KP, Ikura M, Qing G and Inouye M (2003) MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol Cell 12, 913-923   DOI
83 Pedersen K, Zavialov AV, Pavlov MY, Elf J, Gerdes K and Ehrenberg M (2003) The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell 112, 131-140   DOI
84 Zhang Y, Zhang J, Hara H, Kato I and Inouye M (2005) Insights into the mRNA cleavage mechanism by MazF, an mRNA interferase. J Biol Chem 280, 3143-3150   DOI
85 Jorgensen MG, Pandey DP, Jaskolska M and Gerdes K (2009) HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea. J Bacteriol 191, 1191-1199   DOI
86 Kamada K and Hanaoka F (2005) Conformational change in the catalytic site of the ribonuclease YoeB toxin by YefM antitoxin. Mol Cell 19, 497-509   DOI
87 Tian QB, Ohnishi M, Murata T, Nakayama K, Terawaki Y and Hayashi T (2001) Specific protein-DNA and protein-protein interaction in the hig gene system, a plasmid-borne proteic killer gene system of plasmid Rts1. Plasmid 45, 63-74   DOI
88 Samson JE, Belanger M and Moineau S (2013) Effect of the abortive infection mechanism and type III toxin/antitoxin system AbiQ on the lytic cycle of Lactococcus lactis phages. J Bacteriol 195, 3947-3956   DOI
89 Takagi H, Kakuta Y, Okada T, Yao M, Tanaka I and Kimura M (2005) Crystal structure of archaeal toxin-antitoxin RelE-RelB complex with implications for toxin activity and antitoxin effects. Nat Struct Mol Biol 12, 327-331   DOI
90 Schureck MA, Maehigashi T, Miles SJ et al (2014) Structure of the Proteus vulgaris HigB-(HigA)2-HigB toxin-antitoxin complex. J Biol Chem 289, 1060-1070   DOI
91 Ruangprasert A, Maehigashi T, Miles SJ, Giridharan N, Liu JX and Dunham CM (2014) Mechanisms of toxin inhibition and transcriptional repression by Escherichia coli DinJ-YafQ. J Biol Chem 289, 20559-20569   DOI
92 Harrison JJ, Wade WD, Akierman S et al (2009) The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrob Agents Chemother 53, 2253-2258   DOI