Flrt2 is involved in fine-tuning of osteoclast multinucleation |
Shirakawa, Jumpei
(Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine)
Takegahara, Noriko (Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine) Kim, Hyunsoo (Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine) Lee, Seoung Hoon (Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine) Sato, Kohji (Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine) Yamagishi, Satoru (Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine) Choi, Yongwon (Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine) |
1 | Tai-Nagara I, Yoshikawa Y, Numata N et al (2017) Placental labyrinth formation in mice requires endothelial FLRT2/UNC5B signaling. Development 144, 2392-2401 DOI |
2 | Seiradake E, del Toro D, Nagel D et al (2014) FLRT structure: balancing repulsion and cell adhesion in cortical and vascular development. Neuron 84, 370-385 DOI |
3 | Jackson VA, del Toro D, Carrasquero M et al (2015) Structural basis of latrophilin-FLRT interaction. Structure 23, 774-781 DOI |
4 | Maruyama K, Kawasaki T, Hamaguchi M et al (2016) Bone-protective functions of netrin 1 Protein. J Biol Chem 291, 23854-23868 DOI |
5 | Seiradake E, Jones EY and Klein R (2016) Structural Perspectives on Axon Guidance. Annu Rev Cell Dev Biol 32, 577-608 DOI |
6 | Zhu S, Zhu J, Zhen G et al (2019) Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J Clin Invest 129, 1076-1093 DOI |
7 | Takegahara N, Kim H, Mizuno H et al (2016) Involvement of receptor activator of nuclear factor-kappaB ligand (RANKL)-induced incomplete cytokinesis in the polyploidization of osteoclasts. J Biol Chem 291, 3439-3454 DOI |
8 | Paiva KBS and Granjeiro JM (2017) matrix metalloproteinases in bone resorption, remodeling, and repair. Prog Mol Biol Transl Sci 148, 203-303 DOI |
9 | Walsh MC, Kim N, Kadono Y et al (2006) Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 24, 33-63 DOI |
10 | Teitelbaum SL and Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4, 638-649 DOI |
11 | Nakashima T, Hayashi M, Fukunaga T et al (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17, 1231-1234 DOI |
12 | Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC and O'Brien CA (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17, 1235-1241 DOI |
13 | Moutsopoulos NM, Konkel J, Sarmadi M et al (2014) Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17-driven inflammatory bone loss. Sci Transl Med 6, 229ra240 |
14 | Souza PP and Lerner UH (2013) The role of cytokines in inflammatory bone loss. Immunol Invest 42, 555-622 DOI |
15 | Yagi M, Miyamoto T, Sawatani Y et al (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 202, 345-351 DOI |
16 | Miyazaki T, Tokimura F and Tanaka S (2014) A review of denosumab for the treatment of osteoporosis. Patient Prefer Adherence 8, 463-471 DOI |
17 | Kim H, Walsh MC, Takegahara N et al (2017) The purinergic receptor P2X5 regulates inflammasome activity and hyper-multinucleation of murine osteoclasts. Sci Rep 7, 196 DOI |
18 | Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289, 1504-1508 DOI |
19 | Lacy SE, Bonnemann CG, Buzney EA and Kunkel LM (1999) Identification of FLRT1, FLRT2, and FLRT3: a novel family of transmembrane leucine-rich repeat proteins. Genomics 62, 417-426 DOI |
20 | Binder NB, Niederreiter B, Hoffmann O et al (2009) Estrogen-dependent and C-C chemokine receptor-2-dependent pathways determine osteoclast behavior in osteoporosis. Nat Med 15, 417-424 DOI |
21 | Karaulanov EE, Bottcher RT and Niehrs C (2006) A role for fibronectin-leucine-rich transmembrane cell-surface proteins in homotypic cell adhesion. EMBO Rep 7, 283-290 DOI |
22 | Egea J, Erlacher C, Montanez E et al (2008) Genetic ablation of FLRT3 reveals a novel morphogenetic function for the anterior visceral endoderm in suppressing mesoderm differentiation. Genes Dev 22, 3349-3362 DOI |
23 | Leyva-Diaz E, del Toro D, Menal MJ et al (2014) FLRT3 is a Robo1-interacting protein that determines Netrin-1 attraction in developing axons. Curr Biol 24, 494-508 DOI |
24 | Yamagishi S, Hampel F, Hata K et al (2011) FLRT2 and FLRT3 act as repulsive guidance cues for Unc5-positive neurons. EMBO J 30, 2920-2933 DOI |
25 | Maretto S, Muller PS, Aricescu AR, Cho KW, Bikoff EK and Robertson EJ (2008) Ventral closure, headfold fusion and definitive endoderm migration defects in mouse embryos lacking the fibronectin leucine-rich transmembrane protein FLRT3. Dev Biol 318, 184-193 DOI |
26 | Muller PS, Schulz R, Maretto S et al (2011) The fibronectin leucine-rich repeat transmembrane protein Flrt2 is required in the epicardium to promote heart morphogenesis. Development 138, 1297-1308 DOI |
27 | O'Sullivan ML, de Wit J, Savas JN et al (2012) FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron 73, 903-910 DOI |