Browse > Article
http://dx.doi.org/10.5483/BMBRep.2019.52.10.170

Multiplexed single-molecule flow-stretching bead assay for DNA enzymology  

Lee, Ryanggeun (Department of Physics, Pohang University of Science and Technology (POSTECH))
Yang, Keunsang (School of Interdisciplinary Bioscience and Bioengineering, POSTECH)
Lee, Jong-Bong (Department of Physics, Pohang University of Science and Technology (POSTECH))
Publication Information
BMB Reports / v.52, no.10, 2019 , pp. 589-594 More about this Journal
Abstract
Single-molecule techniques have been used successfully to visualize real-time enzymatic activities, revealing transient complex properties and heterogeneity of various biological events. Especially, conventional force spectroscopy including optical tweezers and magnetic tweezers has been widely used to monitor change in DNA length by enzymes with high spatiotemporal resolutions of ~nanometers and ~milliseconds. However, DNA metabolism results from coordination of a number of components during the processes, requiring efficient monitoring of a complex of proteins catalyzing DNA substrates. In this min-review, we will introduce a simple and multiplexed single-molecule assay to detect DNA substrates catalyzed by enzymes with high-throughput data collection. We conclude with a perspective of possible directions that enhance capability of the assay to reveal complex biological events with higher resolution.
Keywords
Flow-stretching bead assay; Force spectroscopy; Multiplexed single-molecule assay; Single-molecule enzymology; Single-molecule technique;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Grashoff C, Hoffman BD, Brenner MD et al (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263-266   DOI
2 Hohng S, Zhou R, Nahas MK et al (2007) Fluorescence-Force Spectroscopy Maps Two-Dimensional Reaction Landscape of the Holliday Junction. Science 318, 279-283   DOI
3 Zhou R, Kozlov Alexander G, Roy R et al (2011) SSB Functions as a Sliding Platform that Migrates on DNA via Reptation. Cell 146, 222-232   DOI
4 Comstock MJ, Whitley KD, Jia H et al (2015) Direct observation of structure-function relationship in a nucleic acid-processing enzyme. Science 348, 352-354   DOI
5 Heller I, Sitters G, Broekmans OD et al (2013) STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nat Methods 10, 910-916   DOI
6 Graham JS, Johnson RC and Marko JF (2011) Concentrationdependent exchange accelerates turnover of proteins bound to double-stranded DNA. Nucleic Acids Res 39, 2249-2259   DOI
7 Hugel T, Michaelis J, Hetherington CL et al (2007) Experimental Test of Connector Rotation during DNA Packaging into Bacteriophage ${\varphi}29$ Capsids. PLoS Biol 5, e59   DOI
8 Madariaga-Marcos J, Hormeno S, Pastrana CL, Fisher GLM, Dillingham MS and Moreno-Herrero F (2018) Force determination in lateral magnetic tweezers combined with TIRF microscopy. Nanoscale 10, 4579-4590   DOI
9 Lee M, Kim SH and Hong SC (2010) Minute negative superhelicity is sufficient to induce the B-Z transition in the presence of low tension. Proc Natl Acad Sci U S A 107, 4985-4990   DOI
10 Loparo JJ, Kulczyk AW, Richardson CC and van Oijen AM. (2011) Simultaneous single-molecule measurements of phage T7 replisome composition and function reveal the mechanism of polymerase exchange. Proc Natl Acad Sci U S A 108, 3584-3589   DOI
11 Xie XS and Lu HP (1999) Single-molecule enzymology. J Biol Chem 274, 15967-15970   DOI
12 Miller H, Zhou Z, Shepherd J, Wollman AJM and Leake MC (2018) Single-molecule techniques in biophysics: a review of the progress in methods and applications. Rep Prog Phys 81, 024601   DOI
13 Zlatanova J and van Holde K (2006) Single-Molecule Biology: What Is It and How Does It Work? Mol Cell 24, 317-329   DOI
14 Deniz AA, Mukhopadhyay S and Lemke EA (2008) Single-molecule biophysics: at the interface of biology, physics and chemistry. J Royal Soc Interface 5, 15-45   DOI
15 Juette MF, Terry DS, Wasserman MR et al (2014) T he bright future of single-molecule fluorescence imaging. Curr Opin Chem Biol 20, 103-111   DOI
16 Neuman KC and Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5, 491-505   DOI
17 Morin JA, Cao FJ, Lazaro JM et al (2012) Active DNA unwinding dynamics during processive DNA replication. Proc Natl Acad Sci U S A 109, 8115-8120   DOI
18 Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R and Block SM (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460-465   DOI
19 Wen JD, Lancaster L, Hodges C et al (2008) Following translation by single ribosomes one codon at a time. Nature 452, 598-603   DOI
20 Strick TR, Croquette V and Bensimon D (2000) Singlemolecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404, 901-904   DOI
21 Ribeck N and Saleh OA (2008) Multiplexed singlemolecule measurements with magnetic tweezers. Rev Sci Instrum 79, 094301   DOI
22 Fan J, Leroux-Coyau M, Savery NJ and Strick TR (2016) Reconstruction of bacterial transcription-coupled repair at single-molecule resolution. Nature 536, 234-237   DOI
23 Neuman KC, Lionnet T and Allemand JF (2007) S ingle-Molecule Micromanipulation Techniques. Annu Rev Mater Res 37, 33-67   DOI
24 Padgett M and Di Leonardo R (2011) Holographic optical tweezers and their relevance to lab on chip devices. Lab Chip 11, 1196   DOI
25 De Vlaminck I, Henighan T, van Loenhout MT, Burnham DR and Dekker C (2012) Magnetic forces and DNA mechanics in multiplexed magnetic tweezers. PLoS One 7, e41432   DOI
26 Sitters G, Kamsma D, Thalhammer G, Ritsch-Marte M, Peterman EJG and Wuite GJL (2015) Acoustic force spectroscopy. Nat Methods 12, 47-50   DOI
27 Kulczyk AW, Tanner NA, Loparo JJ, Richardson CC and van Oijen AM (2010) Direct observation of enzymes replicating DNA using a single-molecule DNA stretching assay. J Vis Exp 36, 1689
28 Thompson RE, Larson DR and Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82, 2775-2783   DOI
29 van Oijen AM, Blainey PC, Crampton DJ, Richardson CC, Ellenberger T and Xie XS (2003) Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder. Science 301, 1235-1238   DOI
30 Lee J-B, Hite RK, Hamdan SM, Sunney Xie X, Richardson CC and van Oijen AM (2006) DNA primase acts as a molecular brake in DNA replication. Nature 439, 621-624   DOI
31 Jeon Y, Kim D, Martin-Lopez JV et al (2016) Dynamic control of strand excision during human DNA mismatch repair. Proc Natl Acad Sci U S A 113, 3281-3286   DOI
32 Hamdan SM, Loparo JJ, Takahashi M, Richardson CC and van Oijen AM (2009) Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis. Nature 457, 336-339   DOI
33 Tanner NA, Hamdan SM, Jergic S et al (2008) Singlemolecule studies of fork dynamics in Escherichia coli DNA replication. Nat Struct Mol Biol 15, 998
34 Park J, Jeon Y, In D, Fishel R, Ban C and Lee JB (2010) Single-molecule analysis reveals the kinetics and physiological relevance of MutL-ssDNA binding. PLoS One 5, e15496   DOI
35 Jergic S, Horan NP, Elshenawy MM et al (2013) A direct proofreader-clamp interaction stabilizes the Pol III replicase in the polymerization mode. EMBO J 32, 1322-1333   DOI
36 Park J, Jergic S, Jeon Y et al (2018) Dynamics of Proofreading by the E. coli Pol III Replicase. Cell Chem Biol 25, 57-66.e54   DOI
37 Elshenawy MM, Jergic S, Xu ZQ et al (2015) Replisome speed determines the efficiency of the Tus-Ter replication termination barrier. Nature 525, 394-398   DOI
38 Harada Y, Arai Y, Yasuda R et al (1999) Tying a molecular knot with optical tweezers. Nature 399, 446-448   DOI
39 Bianco PR, Brewer LR, Corzett M, et al (2001) Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409, 374-378   DOI
40 Sarangapani KK, Duro E, Deng Y et al (2014) Sister kinetochores are mechanically fused during meiosis I in yeast. Science 346, 248-251   DOI
41 Chang M , Oh J, Kim Y , Hohng S and Lee JB (2017) Extended depth of field for single biomolecule optical imaging-force spectroscopy. Opt Express 25, 32189   DOI