Browse > Article
http://dx.doi.org/10.5483/BMBRep.2018.51.3.017

Regulation of the Hippo signaling pathway by ubiquitin modification  

Kim, Youngeun (Department of Life Science, University of Seoul)
Jho, Eek-hoon (Department of Life Science, University of Seoul)
Publication Information
BMB Reports / v.51, no.3, 2018 , pp. 143-150 More about this Journal
Abstract
The Hippo signaling pathway plays an essential role in adult tissue homeostasis and organ size control. Abnormal regulation of Hippo signaling can be a cause for multiple types of human cancers. Since the awareness of the importance of the Hippo signaling in a wide range of biological fields has been continually grown, it is also understood that a thorough and well-rounded comprehension of the precise dynamics could provide fundamental insights for therapeutic applications. Several components in the Hippo signaling pathway are known to be targeted for proteasomal degradation via ubiquitination by E3 ligases. ${\beta}-TrCP$ is a well-known E3 ligase of YAP/TAZ, which leads to the reduction of YAP/TAZ levels. The Hippo signaling pathway can also be inhibited by the E3 ligases (such as ITCH) which target LATS1/2 for degradation. Regulation via ubiquitination involves not only complex network of E3 ligases but also deubiquitinating enzymes (DUBs), which remove ubiquitin from its targets. Interestingly, non-degradative ubiquitin modifications are also known to play important roles in the regulation of Hippo signaling. Although there has been much advanced progress in the investigation of ubiquitin modifications acting as regulators of the Hippo signaling pathway, research done to date still remains inadequate due to the sheer complexity and diversity of the subject. Herein, we review and discuss recent developments that implicate ubiquitin-mediated regulatory mechanisms at multiple steps of the Hippo signaling pathway.
Keywords
Deubiquitinases; E3 ligase; Hippo pathway; Protein degradation; Ubiquitin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li W, You L, Cooper J et al (2010) Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4(DCAF1) in the nucleus. Cell 140, 477-490   DOI
2 Li W, Cooper J, Zhou L et al (2014) Merlin/NF2 loss-driven tumorigenesis linked to CRL4(DCAF1)-mediated inhibition of the hippo pathway kinases Lats1 and 2 in the nucleus. Cancer Cell 26, 48-60   DOI
3 Deng J, Lei W, Xiang X et al (2016) Cullin 4A (CUL4A), a direct target of miR-9 and miR-137, promotes gastric cancer proliferation and invasion by regulating the Hippo signaling pathway. Oncotarget 7, 10037-10050
4 Sang Y, Yan F and Ren X (2015) The role and mechanism of CRL4 E3 ubiquitin ligase in cancer and its potential therapy implications. Oncotarget 6, 42590-42602
5 Ma B, Chen Y, Chen L et al (2015) Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat Cell Biol 17, 95-103
6 Kim M, Kim M, Park SJ, Lee C and Lim DS (2016) Role of Angiomotin-like 2 mono-ubiquitination on YAP inhibition. EMBO Rep 17, 64-78   DOI
7 Kim Y, Kim W, Song Y et al (2017) Deubiquitinase YOD1 potentiates YAP/TAZ activities through enhancing ITCH stability. Proc Natl Acad Sci U S A 114, 4691-4696   DOI
8 Wei X, Shimizu T and Lai ZC (2007) Mob as tumor suppressor is activated by Hippo kinase for growth inhibition in Drosophila. EMBO J 26, 1772-1781   DOI
9 Chan EH, Nousiainen M, Chalamalasetty RB, Schafer A, Nigg EA and Sillje HH (2005) The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 24, 2076-2086   DOI
10 Lignitto L, Arcella A, Sepe M et al (2013) Proteolysis of MOB1 by the ubiquitin ligase praja2 attenuates Hippo signalling and supports glioblastoma growth. Nat Commun 4, 1822   DOI
11 Tapon N, Harvey KF, Bell DW et al (2002) salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467-478   DOI
12 Callus BA, Verhagen AM and Vaux DL (2006) Vaux, Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. FEBS J 273, 4264-4276   DOI
13 Praskova M, Xia F and Avruch J (2008) MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol 18, 311-321   DOI
14 Lee JH, Kim TS, Yang TH et al (2008) A crucial role of WW45 in developing epithelial tissues in the mouse. EMBO J 27, 1231-1242   DOI
15 Lu L, Li Y, Kim SM et al (2010) Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci U S A 107, 1437-1442   DOI
16 Aerne BL, Gailite I, Sims D and Tapon N (2015) Hippo Stabilises Its Adaptor Salvador by Antagonising the HECT Ubiquitin Ligase Herc4. PLoS One 10, e0131113   DOI
17 Poon CL, Lin JI, Zhang X and Harvey KF (2011) The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador-Warts-Hippo pathway. Dev Cell 21, 896-906   DOI
18 Boggiano JC, Vanderzalm PJ and Fehon RG (2011) Tao-1 phosphorylates Hippo/MST kinases to regulate the Hippo-Salvador-Warts tumor suppressor pathway. Dev Cell 21, 888-895   DOI
19 Praskova M, Khoklatchev A, Ortiz-Vega S and Avruch J (2004) Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem J 381(Pt 2), 453-462   DOI
20 Yuan Z, Kim D, Shu S et al (2010) Phosphoinositide 3-kinase/Akt inhibits MST1-mediated pro-apoptotic signaling through phosphorylation of threonine 120. J Biol Chem 285, 3815-3824   DOI
21 Collak FK, Yagiz K, Luthringer DJ, Erkaya B and Cinar B (2012) Threonine-120 phosphorylation regulated by phosphoinositide-3-kinase/Akt and mammalian target of rapamycin pathway signaling limits the antitumor activity of mammalian sterile 20-like kinase 1. J Biol Chem 287, 23698-23709   DOI
22 Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345-357   DOI
23 Xiao L, Chen D, Hu P et al (2011) The c-Abl-MST1 signaling pathway mediates oxidative stress-induced neuronal cell death. J Neurosci 31, 9611-9619   DOI
24 Chen Y, Wang Z, Wang P, Li D, Zhou J and Wu S (2014) CYLD negatively regulates Hippo signaling by limiting Hpo phosphorylation in Drosophila. Biochem Biophys Res Commun 452, 808-812   DOI
25 Rodriguez-Boulan E and Nelson WJ (1989) Morphogenesis of the polarized epithelial cell phenotype. Science 245, 718-725   DOI
26 Chen CL, Gajewski KM, Hamaratoglu F et al (2010) The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc Natl Acad Sci U S A 107, 15810-15815   DOI
27 Varelas X, Samavarchi-Tehrani P, Narimatsu M et al (2010) The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell 19, 831-844   DOI
28 Robinson BS, Huang J, Hong Y and Moberg KH (2010) Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded. Curr Biol 20, 582-590   DOI
29 Ribeiro P, Holder M, Frith D, Snijders AP and Tapon N (2014) Crumbs promotes expanded recognition and degradation by the SCF(Slimb/beta-TrCP) ubiquitin ligase. Proc Natl Acad Sci U S A 111, E1980- E19809   DOI
30 Ling C, Zheng Y, Yin F et al (2010) The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc Natl Acad Sci U S A 107, 10532-10537   DOI
31 Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU and Jentsch S (1999) A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635-644   DOI
32 Meng Z, Moroishi T and Guan KL (2016) Mechanisms of Hippo pathway regulation. Genes Dev 30, 1-17   DOI
33 Zanconato F, Cordenonsi M and Piccolo S (2016) YAP/TAZ at the Roots of Cancer. Cancer Cell 29, 783-803   DOI
34 Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67, 425-479   DOI
35 Ikeda F and Dikic I (2008) Atypical ubiquitin chains: new molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series. EMBO Rep 9, 536-542   DOI
36 Kirisako T, Kamei K, Murata S et al (2006) A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 25, 4877-4887   DOI
37 Li W, Bengtson MH, Ulbrich A et al (2008) Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS One 3, e1487   DOI
38 Nijman SM, Luna-Vargas MP, Velds A et al (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773-786   DOI
39 Canning M, Boutell C, Parkinson J and Everett RD (2004) A RING finger ubiquitin ligase is protected from autocatalyzed ubiquitination and degradation by binding to ubiquitin-specific protease USP7. J Biol Chem 279, 38160-38168   DOI
40 Wu X, Yen L, Irwin L, Sweeney C and Carraway KL 3rd (2004) Stabilization of the E3 ubiquitin ligase Nrdp1 by the deubiquitinating enzyme USP8. Mol Cell Biol 24, 7748-7757   DOI
41 Wertz IE, O'Rourke KM, Zhou H et al (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430, 694-699   DOI
42 Hetfeld BK, Helfrich A, Kapelari B et al (2005) The zinc finger of the CSN-associated deubiquitinating enzyme USP15 is essential to rescue the E3 ligase Rbx1. Curr Biol 15, 1217-1221   DOI
43 Brooks CL, Li M, Hu M, Shi Y and Gu W (2007) The p53--Mdm2--HAUSP complex is involved in p53 stabilization by HAUSP. Oncogene 26, 7262-7266   DOI
44 Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A and Mosialos G (2003) CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 424, 793-796   DOI
45 Liu CY, Zha ZY, Zhou X et al (2010) The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem 285, 37159-37169   DOI
46 Zhao B, Li L, Tumaneng K, Wang CY and Guan KL (2010) A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev 24, 72-85   DOI
47 Huang W, Lv X, Liu C et al (2012) The N-terminal phosphodegron targets TAZ/WWTR1 protein for SCFbeta-TrCP-dependent degradation in response to phosphatidylinositol 3-kinase inhibition. J Biol Chem 287, 26245-26253   DOI
48 Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang C and Hong W (2011) Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J Biol Chem 286, 7018-7026   DOI
49 Tu K, Yang W, Li C et al (2014) Fbxw7 is an independent prognostic marker and induces apoptosis and growth arrest by regulating YAP abundance in hepatocellular carcinoma. Mol Cancer 13, 110   DOI
50 Wang W, Huang J, Wang X et al (2012) PTPN14 is required for the density-dependent control of YAP1. Genes Dev 26, 1959-1971   DOI
51 Wang W, Li N, Li X, Tran MK, Han X and Chen J (2015) Tankyrase Inhibitors Target YAP by Stabilizing Angiomotin Family Proteins. Cell Rep 13, 524-532   DOI
52 Wang W, Huang J and Chen J (2011) Angiomotin-like proteins associate with and negatively regulate YAP1. J Biol Chem 286, 4364-4370   DOI
53 Zhao B, Li L, Lu Q et al (2011) Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev 25, 51-63   DOI
54 Wang C, An J, Zhang P et al (2015) The Nedd4-like ubiquitin E3 ligases target angiomotin/p130 to ubiquitindependent degradation. Biochem J 444, 279-289
55 Zhang Y, Liu S, Mickanin C et al (2011) RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat Cell Biol 13, 623-629   DOI
56 Thanh Nguyen H, Andrejeva D, Gupta R et al (2016) Deubiquitylating enzyme USP9x regulates hippo pathway activity by controlling angiomotin protein turnover. Cell Discov 2, 16001
57 Genevet A, Wehr MC, Brain R, Thompson BJ and Tapon N (2010) Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev Cell 18, 300-308   DOI
58 Huang J, Wu S, Barrera J, Matthews K and Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122, 421-434   DOI
59 Lei QY, Zhang H, Zhao B et al (2008) TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 28, 2426-36   DOI
60 Hamaratoglu F, Willecke M, Kango-Singh M et al (2006) The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 8, 27-36   DOI
61 Yu FX, Zhao B, Panupinthu N et al (2012) Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780-791   DOI
62 Yu J, Zheng Y, Dong J, Klusza S, Deng WM and Pan D (2010) Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell 18, 288-299   DOI
63 Visser-Grieve S, Zhou Z, She YM et al (2011) LATS1 tumor suppressor is a novel actin-binding protein and negative regulator of actin polymerization. Cell Res 21, 1513-1516   DOI
64 Mo JS, Yu FX, Gong R, Brown JH and Guan KL (2012) Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev 26, 2138-2143   DOI
65 Ho KC, Zhou Z, She YM, Chun A, Cyr TD and Yang X (2011) Itch E3 ubiquitin ligase regulates large tumor suppressor 1 stability [corrected]. Proc Natl Acad Sci U S A 108, 4870-5   DOI
66 Zhao B, Li L, Wang L, Wang CY, Yu J and Guan KL (2012) Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 26, 54-68   DOI
67 Wada K, Itoga K, Okano T, Yonemura S and Sasaki H (2011) Hippo pathway regulation by cell morphology and stress fibers. Development 138, 3907-3914   DOI
68 Chen HI and Sudol M (1995) The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc Natl Acad Sci U S A 92, 7819-7823   DOI
69 Salah Z, Melino G and Aqeilan RI (2011) Negative regulation of the Hippo pathway by E3 ubiquitin ligase ITCH is sufficient to promote tumorigenicity. Cancer Res 71, 2010-2020   DOI
70 Salah Z, Cohen S, Itzhaki E and Aqeilan RI (2013) NEDD4 E3 ligase inhibits the activity of the Hippo pathway by targeting LATS1 for degradation. Cell Cycle 12, 3817-3823   DOI
71 Cao L, Wang P, Gao Y, Lin X, Wang F and Wu S (2014) Ubiquitin E3 ligase dSmurf is essential for Wts protein turnover and Hippo signaling. Biochem Biophys Res Commun 454, 167-171   DOI
72 Bae SJ, Kim M, Kim SH et al (2015) NEDD4 controls intestinal stem cell homeostasis by regulating the Hippo signalling pathway. Nat Commun 6, 6314   DOI
73 Yeung B, Ho KC and Yang X (2013) WWP1 E3 ligase targets LATS1 for ubiquitin-mediated degradation in breast cancer cells. PLoS One 8, e61027   DOI