Browse > Article
http://dx.doi.org/10.5483/BMBRep.2017.50.4.013

Mitochondrial noncoding RNA transport  

Kim, Kyoung Mi (Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health)
Noh, Ji Heon (Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health)
Abdelmohsen, Kotb (Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health)
Gorospe, Myriam (Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health)
Publication Information
BMB Reports / v.50, no.4, 2017 , pp. 164-174 More about this Journal
Abstract
Mitochondria are cytosolic organelles essential for generating energy and maintaining cell homeostasis. Despite their critical function, the handful of proteins expressed by the mitochondrial genome is insufficient to maintain mitochondrial structure or activity. Accordingly, mitochondrial metabolism is fully dependent on factors encoded by the nuclear DNA, including many proteins synthesized in the cytosol and imported into mitochondria via established mechanisms. However, there is growing evidence that mammalian mitochondria can also import cytosolic noncoding RNA via poorly understood processes. Here, we summarize our knowledge of mitochondrial RNA, discuss recent progress in understanding the molecular mechanisms and functional impact of RNA import into mitochondria, and identify rising challenges and opportunities in this rapidly evolving field.
Keywords
Cellular transport; Mitochondria; Mitochondrial function; Noncoding RNA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Eilers M and Schatz G (1986) Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature 322, 228-232   DOI
2 Dietrich A, Small I, Cosset A, Weil JH and Marechal-Drouard L (1996) Editing and import: strategies for providing plant mitochondria with a complete set of functional transfer RNAs. Biochimie 78, 518-529   DOI
3 Akashi K, Sakurai K, Hirayama J, Fukuzawa H and Ohyama K (1996) Occurrence of nuclear-encoded tRNAIle in mitochondria of the liverwort Marchantia polymorpha. Curr Genet 30, 181-185   DOI
4 Chen HC, Viry-Moussaid M, Dietrich A and Wintz H (1997) Evolution of a mitochondrial tRNA PHE gene in A. thaliana: import of cytosolic tRNA PHE into mitochondria. Biochem Biophys Res Commun 237, 432-437   DOI
5 Glover KE, Spencer DF and Gray MW (2001) Identification and structural characterization of nucleus-encoded transfer RNAs imported into wheat mitochondria. J Biol Chem 276, 639-648   DOI
6 Brubacher-Kauffmann S, Marechal-Drouard L, Cosset A, Dietrich A and Duchene AM (1999) Differential import of nuclear-encoded tRNAGly isoacceptors into solanum Tuberosum mitochondria. Nucleic Acids Res 27, 2037-2042   DOI
7 Dorner M, Altmann M, Paabo S and Morl M (2001) Evidence for import of a lysyl-tRNA into marsupial mitochondria. Mol Biol Cell 12, 2688-2698   DOI
8 Schneider A (2011) Mitochondrial tRNA import and its consequences for mitochondrial translation. Annu Rev Biochem 80, 1033-1053   DOI
9 Entelis NS, Kieffer S, Kolesnikova OA, Martin RP and Tarassov IA (1998) Structural requirements of tRNALys for its import into yeast mitochondria. Proc Natl Acad Sci U S A 95, 2838-2843   DOI
10 Vestweber D and Schatz G (1989) DNA-protein conjugates can enter mitochondria via the protein import pathway. Nature 338, 170-172   DOI
11 Nierlich DP (1982) Fragmentary 5S rRNA gene in the human mitochondrial genome. Mol Cell Biol 2, 207-209   DOI
12 Pelham HR and Brown DD (1980) A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. Proc Natl Acad Sci U S A 77, 4170-4174   DOI
13 Guddat U, Bakken AH and Pieler T (1990) Proteinmediated nuclear export of RNA: 5S rRNA containing small RNPs in xenopus oocytes. Cell 60, 619-628   DOI
14 Chan YL, Lin A, McNally J and Wool IG (1987) The primary structure of rat ribosomal protein L5. A comparison of the sequence of amino acids in the proteins that interact with 5 S rRNA. J Biol Chem 262, 12879-12886
15 Steitz JA, Berg C, Hendrick JP et al (1988) A 5S rRNA/L5 complex is a precursor to ribosome assembly in mammalian cells. J Cell Biol 106, 545-556   DOI
16 Rudt F and Pieler T (1996) Cytoplasmic retention and nuclear import of 5S ribosomal RNA containing RNPs. EMBO J 15, 1383-1391
17 Smirnov A, Tarassov I, Mager-Heckel AM et al (2008) Two distinct structural elements of 5S rRNA are needed for its import into human mitochondria. RNA 14, 749-759   DOI
18 Smirnov A, Comte C, Mager-Heckel AM et al (2010) Mitochondrial enzyme rhodanese is essential for 5 S ribosomal RNA import into human mitochondria. J Biol Chem 285, 30792-30803   DOI
19 Doersen CJ, Guerrier-Takada C, Altman S and Attardi G (1985) Characterization of an RNase P activity from HeLa cell mitochondria. Comparison with the cytosol RNase P activity. J Biol Chem 260, 5942-5949
20 Kikovska E, Svard SG and Kirsebom LA (2007) Eukaryotic RNase P RNA mediates cleavage in the absence of protein. Proc Natl Acad Sci U S A 104, 2062-2067   DOI
21 Rossmanith W and Karwan RM (1998) Characterization of human mitochondrial RNase P: novel aspects in tRNA processing. Biochem Biophys Res Commun 247, 234-241   DOI
22 Bartkiewicz M, Gold H and Altman S (1989) Identification and characterization of an RNA molecule that copurifies with RNase P activity from HeLa cells. Genes Dev 3, 488-499   DOI
23 Huntzinger E and Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12, 99-110   DOI
24 Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233   DOI
25 Tarassov I, Kamenski P, Kolesnikova O et al (2007) Import of nuclear DNA-encoded RNAs into mitochondria and mitochondrial translation. Cell Cycle 6, 2473-2477   DOI
26 Kolesnikova OA, Entelis NS, Jacquin-Becker C et al (2004) Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells. Hum Mol Genet 13, 2519-2534   DOI
27 Kolesnikova OA, Entelis NS, Mireau H, Fox TD, Martin RP and Tarassov IA (2000) Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm. Science 289, 1931-1933   DOI
28 Filipowicz W, Bhattacharyya SN and Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9, 102-114   DOI
29 Fabian MR, Sonenberg N and Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79, 351-379   DOI
30 Kim VN, Han J and Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10, 126-139
31 Pannucci JA, Haas ES, Hall TA, Harris JK and Brown JW (1999) RNase P RNAs from some Archaea are catalytically active. Proc Natl Acad Sci U S A 96, 7803-7808   DOI
32 Newman MA and Hammond SM (2010) Emerging paradigms of regulated microRNA processing. Genes Dev 24, 1086-1092   DOI
33 Hancock K and Hajduk SL (1990) The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded. J Biol Chem 265, 19208-19215
34 Tarassov IA and Entelis NS (1992) Mitochondriallyimported cytoplasmic tRNA(Lys)(CUU) of Saccharomyces cerevisiae: in vivo and in vitro targetting systems. Nucleic Acids Res 20, 1277-1281   DOI
35 Rubio MA, Rinehart JJ, Krett B et al (2008) Mammalian mitochondria have the innate ability to import tRNAs by a mechanism distinct from protein import. Proc Natl Acad Sci U S A 105, 9186-9191   DOI
36 Brandina I, Graham J, Lemaitre-Guillier C et al (2006) Enolase takes part in a macromolecular complex associated to mitochondria in yeast. Biochim Biophys Acta 1757, 1217-1228   DOI
37 Martin RP, Schneller JM, Stahl AJ and Dirheimer G (1977) Study of yeast mitochondrial tRNAs by twodimensional polyacrylamide gel electrophoresis: characterization of isoaccepting species and search for imported cytoplasmic tRNAs. Nucleic Acids Res 4, 3497-3510   DOI
38 Simpson AM, Suyama Y, Dewes H, Campbell DA and Simpson L (1989) Kinetoplastid mitochondria contain functional tRNAs which are encoded in nuclear DNA and also contain small minicircle and maxicircle transcripts of unknown function. Nucleic Acids Res 17, 5427-5445   DOI
39 Mottram JC, Bell SD, Nelson RG and Barry JD (1991) tRNAs of Trypanosoma brucei. Unusual gene organization and mitochondrial importation. J Biol Chem 266, 18313-18317
40 Lye LF, Chen DH and Suyama Y (1993) Selective import of nuclear-encoded tRNAs into mitochondria of the protozoan Leishmania tarentolae. Mol Biochem Parasitol 58, 233-245   DOI
41 Schneider A, Martin J and Agabian N (1994) A nuclear encoded tRNA of Trypanosoma brucei is imported into mitochondria. Mol Cell Biol 14, 2317-2322   DOI
42 Rusconi CP and Cech TR (1996) Mitochondrial import of only one of three nuclear-encoded glutamine tRNAs in Tetrahymena thermophila. EMBO J 15, 3286-3295
43 Martin RP, Schneller JM, Stahl AJ and Dirheimer G (1979) Import of nuclear deoxyribonucleic acid coded lysine-accepting transfer ribonucleic acid (anticodon C-U-U) into yeast mitochondria. Biochemistry 18, 4600-4605   DOI
44 Tarassov IA and Martin RP (1996) Mechanisms of tRNA import into yeast mitochondria: an overview. Biochimie 78, 502-510   DOI
45 Tarassov I, Entelis N and Martin RP (1995) An intact protein translocating machinery is required for mitochondrial import of a yeast cytoplasmic tRNA. J Mol Biol 245, 315-323   DOI
46 Entelis N, Brandina I, Kamenski P, Krasheninnikov IA, Martin RP and Tarassov I (2006) A glycolytic enzyme, enolase, is recruited as a cofactor of tRNA targeting toward mitochondria in Saccharomyces cerevisiae. Genes Dev 20, 1609-1620   DOI
47 Kamenski P, Smirnova E, Kolesnikova O et al (2010) tRNA mitochondrial import in yeast: Mapping of the import determinants in the carrier protein, the precursor of mitochondrial lysyl-tRNA synthetase. Mitochondrion 10, 284-293   DOI
48 Tarassov I, Entelis N and Martin RP (1995) Mitochondrial import of a cytoplasmic lysine-tRNA in yeast is mediated by cooperation of cytoplasmic and mitochondrial lysyltRNA synthetases. EMBO J 14, 3461-3471
49 Kolesnikova O, Kazakova H, Comte C et al (2010) Selection of RNA aptamers imported into yeast and human mitochondria. RNA 16, 926-941   DOI
50 Gowher A, Smirnov A, Tarassov I and Entelis N (2013) Induced tRNA import into human mitochondria: implication of a host aminoacyl-tRNA-synthetase. PLoS One 8, e66228   DOI
51 Schmitt ME and Clayton DA (1993) Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae. Mol Cell Biol 13, 7935-7941   DOI
52 Ridanpaa M, van Eenennaam H, Pelin K et al (2001) Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell 104, 195-203   DOI
53 Hermanns P, Bertuch AA, Bertin TK et al (2005) Consequences of mutations in the non-coding RMRP RNA in cartilage-hair hypoplasia. Hum Mol Genet 14, 3723-3740   DOI
54 Chu S, Archer RH, Zengel JM and Lindahl L (1994) The RNA of RNase MRP is required for normal processing of ribosomal RNA. Proc Natl Acad Sci U S A 91, 659-663   DOI
55 Gill T, Cai T, Aulds J, Wierzbicki S and Schmitt ME (2004) RNase MRP cleaves the CLB2 mRNA to promote cell cycle progression: novel method of mRNA degradation. Mol Cell Biol 24, 945-953   DOI
56 Maida Y, Yasukawa M, Furuuchi M et al (2009) An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 461, 230-235   DOI
57 Chen HW, Rainey RN, Balatoni CE et al (2006) Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitochondrial homeostasis. Mol Cell Biol 26, 8475-8487   DOI
58 Chen HW, Koehler CM and Teitell MA (2007) Human polynucleotide phosphorylase: location matters. Trends Cell Biol 17, 600-608   DOI
59 Rainey RN, Glavin JD, Chen HW, French SW, Teitell MA and Koehler CM (2006) A new function in translocation for the mitochondrial i-AAA protease Yme1: import of polynucleotide phosphorylase into the intermembrane space. Mol Cell Biol 26, 8488-8497   DOI
60 Marechal-Drouard L, Weil JH and Guillemaut P (1988) Import of several tRNAs from the cytoplasm into the mitochondria in bean Phaseolus vulgaris. Nucleic Acids Res 16, 4777-4788   DOI
61 Guerrier-Takada C, Gardiner K, Marsh T, Pace N and Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849-857   DOI
62 Agrawal RK and Sharma MR (2012) Structural aspects of mitochondrial translational apparatus. Curr Opin Struct Biol 22, 797-803   DOI
63 Lingor P (2010) Regulation of Cell Death and Survival by RNA Interference - The Roles of miRNA and siRNA; in Apoptosome: An up-and-coming therapeutical tool, Cecconi F and D'Amelio M (eds.), 95-117, Springer Netherlands, Dordrecht
64 Catalanotto C, Cogoni C and Zardo G (2016) MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int J Mol Sci 17
65 Yao S (2016) MicroRNA biogenesis and their functions in regulating stem cell potency and differentiation. Biol Proced Online 18, 8   DOI
66 Smits P, Smeitink JA, van den Heuvel LP, Huynen MA and Ettema TJ (2007) Reconstructing the evolution of the mitochondrial ribosomal proteome. Nucleic Acids Res 35, 4686-4703   DOI
67 Mears JA, Sharma MR, Gutell RR et al (2006) A structural model for the large subunit of the mammalian mitochondrial ribosome. J Mol Biol 358, 193-212   DOI
68 Rottiers V and Naar AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13, 239-250   DOI
69 Bushati N and Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23, 175-205   DOI
70 Abdelmohsen K and Gorospe M (2015) Noncoding RNA control of cellular senescence. Wiley Interdiscip Rev RNA 6, 615-629   DOI
71 Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G and Calin GA (2016) microRNA Therapeutics in Cancer - An Emerging Concept. EBioMedicine 12, 34-42   DOI
72 Saeidimehr S, Ebrahimi A, Saki N, Goodarzi P and Rahim F (2016) MicroRNA-Based Linkage between Aging and Cancer: from Epigenetics View Point. Cell J 18, 117-126
73 Kloosterman WP and Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11, 441-450   DOI
74 Das S, Ferlito M, Kent OA et al (2012) Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res 110, 1596-1603   DOI
75 Sripada L, Tomar D and Singh R (2012) Mitochondria: one of the destinations of miRNAs. Mitochondrion 12, 593-599   DOI
76 Bienertova-Vasku J, Sana J and Slaby O (2013) The role of microRNAs in mitochondria in cancer. Cancer Lett 336, 1-7   DOI
77 Marongiu R, Spencer B, Crews L et al (2009) Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson's disease by disturbing calcium flux. J Neurochem 108, 1561-1574   DOI
78 Cha MY, Han SH, Son SM et al (2012) Mitochondriaspecific accumulation of amyloid beta induces mitochondrial dysfunction leading to apoptotic cell death. PLoS One 7, e34929   DOI
79 Reddy PH (2009) Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer's disease. Exp Neurol 218, 286-292   DOI
80 Canugovi C, Shamanna RA, Croteau DL and Bohr VA (2014) Base excision DNA repair levels in mitochondrial lysates of Alzheimer's disease. Neurobiol Aging 35, 1293-1300   DOI
81 Mortiboys H, Thomas KJ, Koopman WJ et al (2008) Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann Neurol 64, 555-565   DOI
82 Canet-Aviles RM, Wilson MA, Miller DW et al (2004) The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A 101, 9103-9108   DOI
83 Devi L, Raghavendran V, Prabhu BM, Avadhani NG and Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283, 9089-9100   DOI
84 Villegas J, Zarraga AM, Muller I et al (2000) A novel chimeric mitochondrial RNA localized in the nucleus of mouse sperm. DNA Cell Biol 19, 579-588   DOI
85 Rackham O, Shearwood AM, Mercer TR, Davies SM, Mattick JS and Filipovska A (2011) Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA 17, 2085-2093   DOI
86 Sanchez MI, Mercer TR, Davies SM et al (2011) RNA processing in human mitochondria. Cell Cycle 10, 2904-2916   DOI
87 Villegas J, Burzio V, Villota C et al (2007) Expression of a novel non-coding mitochondrial RNA in human proliferating cells. Nucleic Acids Res 35, 7336-7347   DOI
88 Burzio VA, Villota C, Villegas J et al (2009) Expression of a family of noncoding mitochondrial RNAs distinguishes normal from cancer cells. Proc Natl Acad Sci U S A 106, 9430-9434   DOI
89 Landerer E, Villegas J, Burzio VA et al (2011) Nuclear localization of the mitochondrial ncRNAs in normal and cancer cells. Cell Oncol (Dordr) 34, 297-305   DOI
90 Bianchessi V, Badi I, Bertolotti M et al (2015) The mitochondrial lncRNA ASncmtRNA-2 is induced in aging and replicative senescence in Endothelial Cells. J Mol Cell Cardiol 81, 62-70   DOI
91 Kumarswamy R, Bauters C, Volkmann I et al (2014) Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res 114, 1569-1575   DOI
92 Entelis NS, Kolesnikova OA, Dogan S, Martin RP and Tarassov IA (2001) 5 S rRNA and tRNA import into human mitochondria. Comparison of in vitro requirements. J Biol Chem 276, 45642-45653   DOI
93 Li K, Smagula CS, Parsons WJ et al (1994) Subcellular partitioning of MRP RNA assessed by ultrastructural and biochemical analysis. J Cell Biol 124, 871-882   DOI
94 Bandiera S, Mategot R, Girard M, Demongeot J and Henrion-Caude A (2013) MitomiRs delineating the intracellular localization of microRNAs at mitochondria. Free Radic Biol Med 64, 12-19   DOI
95 Ballinger SW, Patterson C, Knight-Lozano CA et al (2002) Mitochondrial integrity and function in atherogenesis. Circulation 106, 544-549   DOI
96 Gray MW, Burger G and Lang BF (1999) Mitochondrial evolution. Science 283, 1476-1481   DOI
97 Lane N and Martin W (2010) The energetics of genome complexity. Nature 467, 929-934   DOI
98 Neupert W and Herrmann JM (2007) Translocation of proteins into mitochondria. Annu Rev Biochem 76, 723-749   DOI
99 Srinivasan H and Das S (2015) Mitochondrial miRNA (MitomiR): a new player in cardiovascular health. Can J Physiol Pharmacol 93, 855-861   DOI
100 Zhang X, Zuo X, Yang B et al (2014) MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158, 607-619   DOI
101 Duarte FV, Palmeira CM and Rolo AP (2014) The Role of microRNAs in Mitochondria: Small Players Acting Wide. Genes (Basel) 5, 865-886   DOI
102 Das S, Bedja D, Campbell N et al (2014) miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PLoS One 9, e96820   DOI
103 Dasgupta N, Peng Y, Tan Z, Ciraolo G, Wang D and Li R (2015) miRNAs in mtDNA-less cell mitochondria. Cell Death Discov 1, 15004
104 Bukeirat M, Sarkar SN, Hu H, Quintana DD, Simpkins JW and Ren X (2016) MiR-34a regulates blood-brain barrier permeability and mitochondrial function by targeting cytochrome c. J Cereb Blood Flow Metab 36, 387-392   DOI
105 Jagannathan R, Thapa D, Nichols CE et al (2015) Translational Regulation of the Mitochondrial Genome Following Redistribution of Mitochondrial MicroRNA in the Diabetic Heart. Circ Cardiovasc Genet 8, 785-802   DOI
106 Barrey E, Saint-Auret G, Bonnamy B, Damas D, Boyer O and Gidrol X (2011) Pre-microRNA and mature microRNA in human mitochondria. PLoS One 6, e20220   DOI
107 Antunes F, Corazzari M, Pereira G, Fimia GM, Piacentini M and Smaili S (2016) Fasting boosts sensitivity of human skin melanoma to cisplatin-induced cell death. Biochem Biophys Res Commun [Epub ahead of print]
108 Romanello V, Guadagnin E, Gomes L et al (2010) Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J 29, 1774-1785   DOI
109 Crescenzo R, Bianco F, Mazzoli A, Giacco A, Liverini G and Iossa S (2014) Mitochondrial efficiency and insulin resistance. Front Physiol 5, 512
110 Mathur S, Brooks D and Carvalho CR (2014) Structural alterations of skeletal muscle in copd. Front Physiol 5, 104
111 Katsetos CD, Anni H and Draber P (2013) Mitochondrial dysfunction in gliomas. Semin Pediatr Neurol 20, 216-227   DOI
112 Trifunovic A, Wredenberg A, Falkenberg M et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417-423   DOI
113 Sastre J, Pallardo FV, Garcia de la Asuncion J and Vina J (2000) Mitochondria, oxidative stress and aging. Free Radic Res 32, 189-198   DOI
114 Smirnov AV, Entelis NS, Krasheninnikov IA, Martin R and Tarassov IA (2008) Specific features of 5S rRNA structure - its interactions with macromolecules and possible functions. Biochemistry (Mosc) 73, 1418-1437   DOI
115 Ide T, Tsutsui H, Hayashidani S et al (2001) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88, 529-535   DOI
116 Tonin Y, Heckel AM, Vysokikh M et al (2014) Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA. J Biol Chem 289, 13323-13334   DOI
117 Chang DD and Clayton DA (1989) Mouse RNAase MRP RNA is encoded by a nuclear gene and contains a decamer sequence complementary to a conserved region of mitochondrial RNA substrate. Cell 56, 131-139   DOI
118 Chacinska A, Koehler CM, Milenkovic D, Lithgow T and Pfanner N (2009) Importing mitochondrial proteins: machineries and mechanisms. Cell 138, 628-644   DOI
119 Schmidt O, Pfanner N and Meisinger C (2010) Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol 11, 655-667   DOI
120 Suyama Y (1967) The origins of mitochondrial ribonucleic acids in Tetrahymena pyriformis. Biochemistry 6, 2829-2839   DOI
121 Chang DD and Clayton DA (1987) A mammalian mitochondrial RNA processing activity contains nucleusencoded RNA. Science 235, 1178-1184   DOI
122 Yoshionari S, Koike T, Yokogawa T et al (1994) Existence of nuclear-encoded 5S-rRNA in bovine mitochondria. FEBS Lett 338, 137-142   DOI
123 Kiss T and Filipowicz W (1992) Evidence against a mitochondrial location of the 7-2/MRP RNA in mammalian cells. Cell 70, 11-16   DOI
124 Magalhaes PJ, Andreu AL and Schon EA (1998) Evidence for the presence of 5S rRNA in mammalian mitochondria. Mol Biol Cell 9, 2375-2382   DOI
125 Puranam RS and Attardi G (2001) The RNase P associated with HeLa cell mitochondria contains an essential RNA component identical in sequence to that of the nuclear RNase P. Mol Cell Biol 21, 548-561   DOI
126 Khalil AM, Guttman M, Huarte M et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106, 11667-11672   DOI
127 Guttman M and Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482, 339-346   DOI
128 Kretz M, Siprashvili Z, Chu C et al (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493, 231-235
129 Holzmann J, Frank P, Loffler E, Bennett KL, Gerner C and Rossmanith W (2008) RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135, 462-474   DOI
130 Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223-227   DOI
131 Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311-1323   DOI
132 Mattick JS and Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15 Spec No 1, R17-29   DOI
133 Carpenter S, Aiello D, Atianand MK et al (2013) A long noncoding RNA mediates both activation and repression of immune response genes. Science 341, 789-792   DOI
134 Huarte M, Guttman M, Feldser D et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142, 409-419   DOI
135 Wang G, Chen HW, Oktay Y et al (2010) PNPASE regulates RNA import into mitochondria. Cell 142, 456-467   DOI
136 Bandiera S, Ruberg S, Girard M et al (2011) Nuclear outsourcing of RNA interference components to human mitochondria. PLoS One 6, e20746   DOI
137 Sripada L, Tomar D, Prajapati P, Singh R, Singh AK and Singh R (2012) Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: detailed analysis of mitochondrial associated miRNA. PLoS One 7, e44873   DOI
138 Kamenski P, Kolesnikova O, Jubenot V et al (2007) Evidence for an adaptation mechanism of mitochondrial translation via tRNA import from the cytosol. Mol Cell 26, 625-637   DOI
139 Smirnov A, Entelis N, Martin RP and Tarassov I (2011) Biological significance of 5S rRNA import into human mitochondria: role of ribosomal protein MRP-L18. Genes Dev 25, 1289-1305   DOI
140 Noh JH, Kim KM, Abdelmohsen K et al (2016) HuR and GRSF1 modulate the nuclear export and mitochondrial localization of the lncRNA RMRP. Genes Dev 30, 1224-1239
141 O'Brien TW (2002) Evolution of a protein-rich mitochondrial ribosome: implications for human genetic disease. Gene 286, 73-79   DOI
142 Ojala D, Montoya J and Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290, 470-474   DOI
143 Attardi G and Ojala D (1971) Mitochondrial ribssome in HeLa cells. Nat New Biol 229, 133-136
144 Mercer TR, Neph S, Dinger ME et al (2011) The human mitochondrial transcriptome. Cell 146, 645-658   DOI
145 Sharma MR, Booth TM, Simpson L, Maslov DA and Agrawal RK (2009) Structure of a mitochondrial ribosome with minimal RNA. Proc Natl Acad Sci U S A 106, 9637-9642   DOI
146 Salinas T, Duchene AM, Delage L et al (2006) The voltage-dependent anion channel, a major component of the tRNA import machinery in plant mitochondria. Proc Natl Acad Sci U S A 103, 18362-18367   DOI
147 O'Brien TW (1971) The general occurrence of 55 S ribosomes in mammalian liver mitochondria. J Biol Chem 246, 3409-3417
148 Grivell LA, Reijnders L and Borst P (1971) Isolation of yeast mitochondrial ribosomes highly active in protein synthesis. Biochim Biophys Acta 247, 91-103   DOI
149 Sharma MR, Koc EC, Datta PP, Booth TM, Spremulli LL and Agrawal RK (2003) Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell 115, 97-108   DOI