Browse > Article
http://dx.doi.org/10.5483/BMBRep.2017.50.1.135

Databases and tools for constructing signal transduction networks in cancer  

Nam, Seungyoon (Department of Life Sciences, Gachon University)
Publication Information
BMB Reports / v.50, no.1, 2017 , pp. 12-19 More about this Journal
Abstract
Traditionally, biologists have devoted their careers to studying individual biological entities of their own interest, partly due to lack of available data regarding that entity. Large, high-throughput data, too complex for conventional processing methods (i.e., "big data"), has accumulated in cancer biology, which is freely available in public data repositories. Such challenges urge biologists to inspect their biological entities of interest using novel approaches, firstly including repository data retrieval. Essentially, these revolutionary changes demand new interpretations of huge datasets at a systems-level, by so called "systems biology". One of the representative applications of systems biology is to generate a biological network from high-throughput big data, providing a global map of molecular events associated with specific phenotype changes. In this review, we introduce the repositories of cancer big data and cutting-edge systems biology tools for network generation, and improved identification of therapeutic targets.
Keywords
Cancer; Network biology; Signaling network; Systems biology;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Butte AJ and Kohane IS (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput, 418-429
2 Franz M, Lopes CT, Huck G, Dong Y, Sumer O and Bader GD (2016) Cytoscape.js: a graph theory library for visualisation and analysis. Bioinformatics 32, 309-311
3 Jang Y, Yu N, Seo J, Kim S and Lee S (2016) MONGKIE: an integrated tool for network analysis and visualization for multi-omics data. Biol Direct 11, 10   DOI
4 Smoot ME, Ono K, Ruscheinski J, Wang PL and Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431-432   DOI
5 Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2, 401-404   DOI
6 Parkinson H, Sarkans U, Kolesnikov N et al (2011) ArrayExpress update--an archive of microarray and highthroughput sequencing-based functional genomics experiments. Nucleic Acids Res 39, D1002-1004   DOI
7 Zhu J, Sanborn JZ, Benz S et al (2009) The UCSC Cancer Genomics Browser. Nat Methods 6, 239-240   DOI
8 Barretina J, Caponigro G, Stransky N et al (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603-607   DOI
9 Madhamshettiwar PB, Maetschke SR, Davis MJ, Reverter A and Ragan MA (2012) Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome Med 4, 41   DOI
10 Galvanauskas V, Simutis R and Lubbert A (2004) Hybrid process models for process optimisation, monitoring and control. Bioprocess Biosyst Eng 26, 393-400   DOI
11 Khatri P, Sirota M and Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8, e1002375   DOI
12 Tarca AL, Draghici S, Khatri P et al (2009) A novel signaling pathway impact analysis. Bioinformatics 25, 75-82   DOI
13 Vogelstein B and Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10, 789-799   DOI
14 Smith BA, Sokolov A, Uzunangelov V et al (2015) A basal stem cell signature identifies aggressive prostate cancer phenotypes. Proc Natl Acad Sci U S A 112, E6544-6552   DOI
15 Hong Y, Ho KS, Eu KW and Cheah PY (2007) A susceptibility gene set for early onset colorectal cancer that integrates diverse signaling pathways: implication for tumorigenesis. Clin Cancer Res 13, 1107-1114   DOI
16 Nam S, Chang HR, Jung HR et al (2015) A pathway-based approach for identifying biomarkers of tumor progression to trastuzumab-resistant breast cancer. Cancer Lett 356, 880-890   DOI
17 Huang da W, Sherman BT and Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44-57   DOI
18 Chang HR, Nam S, Kook MC et al (2016) HNF4alpha is a therapeutic target that links AMPK to WNT signalling in early-stage gastric cancer. Gut 65, 19-32   DOI
19 Chang HR, Park HS, Ahn YZ et al (2016) Improving gastric cancer preclinical studies using diverse in vitro and in vivo model systems. BMC Cancer 16, 200   DOI
20 Bang YJ, Van Cutsem E, Feyereislova A et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687-697   DOI
21 Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202-209   DOI
22 Bailey P, Chang DK, Nones K et al (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47-52   DOI
23 Hernansaiz-Ballesteros RD, Salavert F, Sebastian-Leon P, Aleman A, Medina I and Dopazo J (2015) Assessing the impact of mutations found in next generation sequencing data over human signaling pathways. Nucleic Acids Res 43, W270-275   DOI
24 Wishart DS, Knox C, Guo AC et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34, D668-672   DOI
25 Whirl-Carrillo M, McDonagh EM, Hebert JM et al (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92, 414-417   DOI
26 Tanaka H and Ogishima S (2015) Network biology approach to epithelial-mesenchymal transition in cancer metastasis: three stage theory. J Mol Cell Biol 7, 253-266   DOI
27 Zhang B and Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4, 12287
28 Gnad F, Doll S, Manning G, Arnott D and Zhang Z (2015) Bioinformatics analysis of thousands of TCGA tumors to determine the involvement of epigenetic regulators in human cancer. BMC Genomics 16 Suppl 8, S5
29 Horvath S, Zhang B, Carlson M et al (2006) Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci U S A 103, 17402-17407   DOI
30 Kling T, Johansson P, Sanchez J, Marinescu VD, Jornsten R and Nelander S (2015) Efficient exploration of pancancer networks by generalized covariance selection and interactive web content. Nucleic Acids Res 43, e98   DOI
31 Jarvstrat L, Johansson M, Gullberg U and Nilsson B (2013) Ultranet: efficient solver for the sparse inverse covariance selection problem in gene network modeling. Bioinformatics 29, 511-512   DOI
32 Storry JR, Joud M, Christophersen MK et al (2013) Homozygosity for a null allele of SMIM1 defines the Vel-negative blood group phenotype. Nat Genet 45, 537-541   DOI
33 Griffith M, Griffith OL, Coffman AC et al (2013) DGIdb: mining the druggable genome. Nat Methods 10, 1209-1210   DOI
34 Chen X, Chen M and Ning K (2006) BNArray: an R package for constructing gene regulatory networks from microarray data by using Bayesian network. Bioinformatics 22, 2952-2954   DOI
35 Yu J, Smith VA, Wang PP, Hartemink AJ and Jarvis ED (2004) Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20, 3594-3603   DOI
36 Frolova A and Wilczynski B (2015) Distributed Bayesian Networks Reconstruction on the Whole Genome Scale. bioRxiv doi: 10.1101/016683   DOI
37 Salzman P and Almudevar A (2006) Using complexity for the estimation of Bayesian networks. Stat Appl Genet Mol Biol 5, Article21
38 Bansal M, Belcastro V, Ambesi-Impiombato A and di Bernardo D (2007) How to infer gene networks from expression profiles. Mol Syst Biol 3, 78
39 Volinia S, Galasso M, Costinean S et al (2010) Reprogramming of miRNA networks in cancer and leukemia. Genome Res 20, 589-599   DOI
40 Adabor ES, Acquaah-Mensah GK and Oduro FT (2015) SAGA: a hybrid search algorithm for Bayesian Network structure learning of transcriptional regulatory networks. J Biomed Inform 53, 27-35   DOI
41 Markowetz F and Spang R (2007) Inferring cellular networks--a review. BMC Bioinformatics 8 Suppl 6, S5
42 Margolin AA, Nemenman I, Basso K et al (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7 Suppl 1, S7
43 Chuang HY, Hofree M and Ideker T (2010) A decade of systems biology. Annu Rev Cell Dev Biol 26, 721-744   DOI
44 Jost D, Nowojewski A and Levine E (2011) Small RNA biology is systems biology. BMB Rep 44, 11-21   DOI
45 Nam S and Park T (2012) Pathway-based evaluation in early onset colorectal cancer suggests focal adhesion and immunosuppression along with epithelial-mesenchymal transition. PLoS One 7, e31685   DOI
46 Nam S, Long X, Kwon C, Kim S and Nephew KP (2012) An integrative analysis of cellular contexts, miRNAs and mRNAs reveals network clusters associated with antiestrogen-resistant breast cancer cells. BMC Genomics 13, 732   DOI
47 Rho S, You S, Kim Y and Hwang D (2008) From proteomics toward systems biology: integration of different types of proteomics data into network models. BMB Rep 41, 184-193   DOI
48 Nam S, Chang HR, Kim KT et al (2014) PATHOME: an algorithm for accurately detecting differentially expressed subpathways. Oncogene 33, 4941-4951   DOI
49 Soon WW, Hariharan M and Snyder MP (2013) Highthroughput sequencing for biology and medicine. Mol Syst Biol 9, 640
50 Werner HM, Mills GB and Ram PT (2014) Cancer Systems Biology: a peek into the future of patient care? Nat Rev Clin Oncol 11, 167-176   DOI
51 Altaf-Ul-Amin M, Afendi FM, Kiboi SK and Kanaya S (2014) Systems biology in the context of big data and networks. Biomed Res Int 2014, 428570
52 Marx V (2013) Drilling into big cancer-genome data. Nat Meth 10, 293-297   DOI
53 Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA et al (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45, 1113-1120   DOI
54 Zhang J, Baran J, Cros A et al (2011) International Cancer Genome Consortium Data Portal--a one-stop shop for cancer genomics data. Database (Oxford) 2011, bar026
55 Ghosh S, Matsuoka Y, Asai Y, Hsin KY and Kitano H (2011) Software for systems biology: from tools to integrated platforms. Nat Rev Genet 12, 821-832   DOI
56 Encode Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74   DOI
57 Zierer J, Menni C, Kastenmuller G and Spector TD (2015) Integration of 'omics' data in aging research: from biomarkers to systems biology. Aging Cell 14, 933-944   DOI
58 Pecina-Slaus N and Pecina M (2015) Only one health, and so many omics. Cancer Cell Int 15, 64   DOI
59 International Cancer Genome Consortium, Hudson TJ, Anderson W et al (2010) International network of cancer genome projects. Nature 464, 993-998   DOI
60 Tryka KA, Hao L, Sturcke A et al (2014) NCBI's Database of Genotypes and Phenotypes: dbGaP. Nucleic Acids Res 42, D975-979   DOI
61 Barrett T, Wilhite SE, Ledoux P et al (2013) NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res 41, D991-995
62 Rocca-Serra P, Brazma A, Parkinson H et al (2003) ArrayExpress: a public database of gene expression data at EBI. C R Biol 326, 1075-1078   DOI
63 Kusebauch U, Deutsch EW, Campbell DS, Sun Z, Farrah T and Moritz RL (2014) Using PeptideAtlas, SRMAtlas, and PASSEL: Comprehensive Resources for Discovery and Targeted Proteomics. Curr Protoc Bioinformatics 46, 13.25.1-13.25.28
64 Jones P and Cote R (2008) The PRIDE proteomics identifications database: data submission, query, and dataset comparison. Methods Mol Biol 484, 287-303
65 Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP and Tamayo P (2015) The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1, 417-425   DOI
66 Nam S, Li M, Choi K, Balch C, Kim S and Nephew KP (2009) MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res 37, W356-362   DOI
67 Jung S and Kim S (2014) EDDY: a novel statistical gene set test method to detect differential genetic dependencies. Nucleic Acids Res 42, e60   DOI
68 Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550   DOI
69 Maciejewski H (2014) Gene set analysis methods: statistical models and methodological differences. Brief Bioinform 15, 504-518   DOI
70 Emmert-Streib F, Tripathi S and de Matos Simoes R (2012) Harnessing the complexity of gene expression data from cancer: from single gene to structural pathway methods. Biol Direct 7, 44   DOI
71 Kanehisa M and Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27-30   DOI
72 Croft D, Mundo AF, Haw R et al (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42, D472-477   DOI
73 Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43, D447-452   DOI
74 Yu N, Seo J, Rho K et al (2012) hiPathDB: a humanintegrated pathway database with facile visualization. Nucleic Acids Res 40, D797-802   DOI
75 Hucka M, Finney A, Sauro HM et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524-531   DOI
76 Schaefer CF, Anthony K, Krupa S et al (2009) PID: the Pathway Interaction Database. Nucleic Acids Res 37, D674-679   DOI
77 Nishimura D (2001) BioCarta. Biotech Software & Internet Report 2, 117-120   DOI
78 Allen JD, Xie Y, Chen M, Girard L and Xiao G (2012) Comparing statistical methods for constructing large scale gene networks. PLoS One 7, e29348   DOI