1 |
The RCSB Protein Data Bank (https://www.rcsb.org)
|
2 |
Daughdrill GW, Chadsey MS, Karlinsey JE, Hughes KT, Dahlquist FW (1997) The C-terminal half of the anti-sigma factor, FlgM, becomes structured when bound to its target, . Nat Struct Mol Biol 4, 285-291.
DOI
|
3 |
Lee H, Mok KH, Muhandiram R et al (2000) Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J Biol Chem 275, 29426-29432
DOI
|
4 |
Lee S-H, Kim D-H, Han JJ et al (2012) Understanding pre-structured motifs (PreSMos) in intrinsically unfolded proteins. Curr Protein Pept Sci 13, 34-54
DOI
|
5 |
Dunker AK, Babu MM, Barbar E et al (2013) What’s in a name? Why these proteins are intrinsically disordered. Intrinsically Disordered Proteins 1, e24157
DOI
|
6 |
Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: Introducing the D2 concept. Annu Rev Biophys 37, 215-246
DOI
|
7 |
Tompa P, Han KH, Bokor M et al (2016) Wide-line NMR and DSC studies on intrinsically disordered p53 transactivation domain and its helically pre-structured segment. BMB Rep 9, 497-501
|
8 |
Eliezer D, Kutluay E, Bussell R Jr, Browne G (2001) Conformational properties of -synuclein in its free and lipid-associated states. J Mol Biol 307, 1061-1073
DOI
|
9 |
Mukrasch MD, Bibow S, Korukottu J et al (2009) Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol 7, e1000034
DOI
|
10 |
Chi SW, Kim DH, Lee SH, Chang I, Han KH (2007) Pre-structured motifs in the natively unstructured preS1 surface antigen of hepatitis B virus. Protein Sci 16, 2108-2117
DOI
|
11 |
Kim DH, Lee SH, Nam KH, Chi SW, Chang I, Han KH (2009) Multiple hTAFII31-binding motifs in the intrinsically unfolded transcriptional activation domain of VP16. BMB Rep 42, 411-417
DOI
|
12 |
Lee SH, Cha EJ, Lim JE et al (2012) Structural characterization of an intrinsically unfolded mini-HBX protein from hepatitis B virus. Mol Cells 34, 165-169
DOI
|
13 |
Xue B, Blocquel D, Habchi J et al (2014) Structural disorder in viral proteins. Chem Rev 114, 6880-6911
DOI
|
14 |
Lee C, Kim DH, Lee SH, Su J and Han KH (2016) Structural investigation on the intrinsically disordered N-terminal region of HPV16 E7 protein. BMB Rep 49, 431-436
DOI
|
15 |
Radhakrishnan I, Perez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE (1997) Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: A model for activator:coactivator interactions. Cell 91, 741-752
DOI
|
16 |
Fletcher CM and Wagner G (1998) The interaction of eIF4E with 4E-BP1 is an induced fit to a completely disordered protein. Protein Sci 7, 1639-1642
DOI
|
17 |
Ramelot TA, Gentile LN, Nicholson LK (2000) Transient structure of the amyloid precursor protein cytoplasmic tail indicates preordering of structure for binding to cytosolic factors. Biochemistry 39, 2714-2725
DOI
|
18 |
Sayers EW, Gerstner RB, Draper DE, Torchia DA (2000) Structural preordering in the N-terminal region of ribosomal protein S4 revealed by heteronuclear NMR spectroscopy. Biochemistry 39, 13602-13613
DOI
|
19 |
Chi SW, Lee SH, Kim DH (2005) Structural details on mdm2-p53 interaction. J Biol Chem 280, 38795-38802
DOI
|
20 |
Di Lello P, Jenkins LMM, Jones TN et al (2006) Structure of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol Cell 22, 731-740
DOI
|
21 |
Bochkareva E, Kaustov L, Ayed A et al (2005) Singlestranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proc Natl Acad Sci U S A 102, 15412-15417
DOI
|
22 |
Lee CW, Martinez-Yamout MA, Dyson HJ, Wright PE (2010) Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Biochemistry 49, 9964-9971
DOI
|
23 |
Ha JH, Shin JS, Yoon MK (2013) Dual-site interactions of p53 protein transactivation domain with anti-apoptotic Bcl-2 family proteins reveal a highly convergent mechanism of divergent p53 pathways. J Biol Chem 288, 7387-7398
DOI
|
24 |
Andresen C, Helander S, Lemak A et al (2012) Transient structure and dynamics in the disordered c-Myc transactivation domain affect Bin1 binding. Nucleic Acids Res 40, 6353-6366
DOI
|
25 |
Kim DH, Lee C, Cho YJ (2015) A pre-structured helix in the intrinsically disordered 4EBP1. Mol BioSyst 11, 366-369
DOI
|
26 |
Berlow RB, Dyson HJ1, Wright PE (2017) Hypersensitive termination of the hypoxic response by a disordered protein switch. Nature 543, 447-451
DOI
|
27 |
Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240, 889-895
DOI
|
28 |
Hollenberg SM and Evans RM (1988) Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell 55, 899-906
DOI
|
29 |
Dahlman-Wright K, Baumann H, McEwan IJ et al (1995) Structural characterization of a minimal functional transactivation domain from the human glucocorticoid receptor. Proc Natl Acad Sci U S A 92, 1699-1703
DOI
|
30 |
Dahlman-Wright K, Almlof T, McEwan IJ, Gustafsson JA, Wright AP (1994) Delineation of a small region within the major transactivation domain of the human glucocorticoid receptor that mediates transactivation of gene expression. Proc Natl Acad Sci U S A 91, 1619-1623
DOI
|
31 |
Kim DH, Lee C, Lee SH et al (2017) The Mechanism of p53 Rescue by SUSP4. Angew Chem Int Ed Engl 56, 1278-1282
DOI
|
32 |
Marsh JA, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structure propensities to sequence differences between - and -synuclein: Implications for fibrillation. Protein Sci 15, 2795-2804
DOI
|
33 |
Baker JM, Hudson RP, Kanelis V et al (2007) CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat Struct Mol Biol 14, 738-745
DOI
|
34 |
Zhang X, Perugini MA, Yao S et al (2008) Solution conformation, backbone dynamics and lipid interactions of the intrinsically unstructured malaria surface protein MSP2. J Mol Biol 379, 105-121
DOI
|
35 |
Almlof T, Gustafsson JA, Wright AP (1997) Role of hydrophobic amino acid clusters in the transactivation activity of the human glucocorticoid receptor. Mol Cell Biol 17, 934-945
DOI
|
36 |
Lee C, Kalmar L, Xue B et al (2014) Contribution of proline to the pre-structuring tendency of transient helical secondary structure elements in intrinsically disordered proteins. Biochim Biophys Acta 1840, 993-1003
DOI
|
37 |
Iesmantavicius V, Dogan J, Jemth P, Teilum K, Kjaergaard M (2014) Helical propensity in an intrinsically disordered protein accelerates ligand binding. Angew Chem Int Ed Engl 53, 1548-1551
DOI
|
38 |
Borcherds W, Theillet FX, Katzer A et al (2014) Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells. Nat Chem Biol 10, 1000-1002
DOI
|