Browse > Article
http://dx.doi.org/10.5483/BMBRep.2016.49.8.079

Dual function of MG53 in membrane repair and insulin signaling  

Tan, Tao (Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center)
Ko, Young-Gyu (Division of Life Sciences, Korea University)
Ma, Jianjie (Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center)
Publication Information
BMB Reports / v.49, no.8, 2016 , pp. 414-423 More about this Journal
Abstract
MG53 is a member of the TRIM-family protein that acts as a key component of the cell membrane repair machinery. MG53 is also an E3-ligase that ubiquinates insulin receptor substrate-1 and controls insulin signaling in skeletal muscle cells. Since its discovery in 2009, research efforts have been devoted to translate this basic discovery into clinical applications in human degenerative and metabolic diseases. This review article highlights the dual function of MG53 in cell membrane repair and insulin signaling, the mechanism that underlies the control of MG53 function, and the therapeutic value of targeting MG53 function in regenerative medicine.
Keywords
MG53; TRIM72; E3 ligase; Muscular Dystrophy; Membrane Repair; Insulin Resistance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Liu J, Zhu H, Zheng Y et al (2015) Cardioprotection of recombinant human MG53 protein in a porcine model of ischemia and reperfusion injury. J Mol Cell Cardiol 80, 10-19   DOI
2 Zhou X, Chen M, Wang S, Yu L and Jiang H (2015) MG53 protein: a promising novel therapeutic target for myocardial ischemia reperfusion injury. Int J Cardiol 199, 424-425   DOI
3 Duann P, Li H, Lin P et al (2015) MG53-mediated cell membrane repair protects against acute kidney injury. Sci Transl Med 7, 279ra36   DOI
4 Lee CS, Yi JS, Jung SY et al (2010) TRIM72 negatively regulates myogenesis via targeting insulin receptor substrate-1. Cell Death Differ 17, 1254-1265   DOI
5 Song R, Peng W, Zhang Y et al (2013) Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders. Nature 494, 375-379   DOI
6 Yi JS, Park JS, Ham YM et al (2013) MG53-induced IRS-1 ubiquitination negatively regulates skeletal myogenesis and insulin signalling. Nat Commun 4, 2354   DOI
7 Nguyen N, Yi JS, Park H, Lee JS and Ko YG (2014) Mitsugumin 53 (MG53) ligase ubiquitinates focal adhesion kinase during skeletal myogenesis. J Biol Cehm 289, 3209-3216   DOI
8 Weisleder N, Takeshima H and Ma J (2008) Immuno-proteomic approach to excitation--contraction coupling in skeletal and cardiac muscle: molecular insights revealed by the mitsugumins. Cell Calcium 43, 1-8   DOI
9 Weisleder N, Brotto M, Komazaki S et al (2006) Muscle aging is associated with compromised Ca2+ spark signaling and segregated intracellular Ca2+ release. J Cell Biol 174, 639-645   DOI
10 Weisleder N and Ma J (2008) Altered Ca2+ sparks in aging skeletal and cardiac muscle. Ageing Res Rev 7, 177-188   DOI
11 Zhao X, Weisleder N, Thornton A et al (2008) Compromised store-operated Ca2+ entry in aged skeletal muscle. Aging Cell 7, 561-568   DOI
12 Takeshima H, Shimuta M, Komazaki S et al (1998) Mitsugumin29, a novel synaptophysin family member from the triad junction in skeletal muscle. Biochem J 331 (Pt 1), 317-322   DOI
13 Pan Z, Yang D, Nagaraj RY et al (2002) Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nat Cell Biol 4, 379-383   DOI
14 Nagaraj RY, Nosek CM, Brotto MA et al (2000) Increased susceptibility to fatigue of slow- and fast-twitch muscles from mice lacking the MG29 gene. Physiol Genomics 4, 43-49.   DOI
15 Pan Z, Hirata Y, Nagaraj RY et al (2004) Co-expression of MG29 and ryanodine receptor leads to apoptotic cell death: effect mediated by intracellular Ca2+ release. J Biol Chem 279, 19387-19390   DOI
16 Brotto MA, Nagaraj RY, Brotto LS et al (2004) Defective maintenance of intracellular Ca2+ homeostasis is linked to increased muscle fatigability in the MG29 null mice. Cell Res 14, 373-378   DOI
17 Kurebayashi N, Takeshima H, Nishi M et al (2003) Changes in Ca2+ handling in adult MG29-deficient skeletal muscle. Biochem Biophys Res Commun 310, 1266-1272   DOI
18 Yazawa M, Ferrante C, Feng J et al (2007) TRIC channels are essential for Ca2+ handling in intracellular stores. Nature 448, 78-82   DOI
19 Zhao X, Yamazaki D, Park KH et al (2010) Ca2+ overload and sarcoplasmic reticulum instability in tric-a null skeletal muscle. J Biol Chem 285, 37370-37376   DOI
20 Takeshima H, Komazaki S, Nishi M, Iino M and Kangawa K (2000) Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell 6, 11-22
21 Landstrom AP, Kellen CA, Dixit SS et al (2011) Junctophilin-2 expression silencing causes cardiocyte hypertrophy and abnormal intracellular calcium-handling. Circ Heart Fail 4, 214-223   DOI
22 Cai C, Masumiya H, Weisleder N et al (2009) MG53 regulates membrane budding and exocytosis in muscle cells. J Biol Chem 284, 3314-3322   DOI
23 Jung SY and Ko YG (2010) TRIM72, a novel negative feedback regulator of myogenesis, is transcriptionally activated by the synergism of MyoD (or myogenin) and MEF2. Biochem Biophys Res Commun 396, 238-245   DOI
24 Ishikawa Y, Otsu K and Oshikawa J (2005) Caveolin; different roles for insulin signal? Cellular Signal 17, 1175-1182   DOI
25 Inokuchi J (2010) Membrane microdomains and insulin resistance. FEBS Lett 584, 1864-1871   DOI
26 Cohen AW, Razani B, Wang XB et al (2003) Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am J Physiol Cell Physiol 285, C222-235   DOI
27 Oshikawa J, Otsu K, Toya Y et al (2004) Insulin resistance in skeletal muscles of caveolin-3-null mice. Proc Natl Acad Sci U S A 101, 12670-12675   DOI
28 Liu L, Brown D, McKee M et al (2008) Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab 8, 310-317   DOI
29 Kim BW, Lee CS, Yi JS et al (2010) Lipid raft proteome reveals that oxidative phosphorylation system is associated with the plasma membrane. Expert Rev proteomics 7, 849-866   DOI
30 Saeki K, Miura Y, Aki D, Kurosaki T and Yoshimura A (2003) The B cell-specific major raft protein, Raftlin, is necessary for the integrity of lipid raft and BCR signal transduction. EMBO J 22, 3015-3026   DOI
31 Gupta N, Wollscheid B, Watts JD et al (2006) Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nat Immunol 7, 625-633   DOI
32 Hill MM, Bastiani M, Luetterforst R et al (2008) PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132, 113-124   DOI
33 Kim KB, Kim BW, Choo HJ et al (2009) Proteome analysis of adipocyte lipid rafts reveals that gC1qR plays essential roles in adipogenesis and insulin signal transduction. Proteomics 9, 2373-2382   DOI
34 Zhu H, Lin P, De G et al (2011) Polymerase transcriptase release factor (PTRF) anchors MG53 protein to cell injury site for initiation of membrane repair. J Biol Chem 286, 12820-12824   DOI
35 Hatakeyama S (2011) TRIM proteins and cancer. Nat Rev Cancer 11, 792-804   DOI
36 Cai C, Lin P, Zhu H et al (2015) Zinc binding to MG53 protein facilitates repair of injury to cell membranes. J Biol Cehm 290, 13830-13839   DOI
37 Li H, Duann P, Lin PH et al (2015) Modulation of wound healing and scar formation by MG53 protein-mediated cell membrane repair. J Biol Chem 290, 24592-24603   DOI
38 Hwang M, Ko JK, Weisleder N, Takeshima H and Ma J (2011) Redox-dependent oligomerization through a leucine zipper motif is essential for MG53-mediated cell membrane repair. Am J Physiol Cell Physiol 301, C106-114   DOI
39 Park EY, Kwon OB, Jeong BC et al (2010) Crystal structure of PRY-SPRY domain of human TRIM72. Proteins 78, 790-795
40 Bansal D and Campbell KP (2004) Dysferlin and the plasma membrane repair in muscular dystrophy. Trends Cell Biol 14, 206-213   DOI
41 McNeil PL and Kirchhausen T (2005) An emergency response team for membrane repair. Nat Rev Mol Cell Biol 6, 499-505   DOI
42 Weiler T, Bashir R, Anderson LV et al (1999) Identical mutation in patients with limb girdle muscular dystrophy type 2B or Miyoshi myopathy suggests a role for modifier gene(s). Hum Mol Genet 8, 871-877   DOI
43 Saito A, Higuchi I, Nakagawa M et al (2002) Miyoshi myopathy patients with novel 5' splicing donor site mutations showed different dysferlin immunostaining at the sarcolemma. Acta Neuropathol 104, 615-620
44 Glover L and Brown RH Jr (2007) Dysferlin in membrane trafficking and patch repair. Traffic 8, 785-794   DOI
45 Kim S, Seo J, Ko YG, Huh YD and Park H (2012) Lipid-binding properties of TRIM72. BMB Rep 45, 26-31   DOI
46 Lin P, Zhu H, Cai C et al (2012) Nonmuscle myosin IIA facilitates vesicle trafficking for MG53-mediated cell membrane repair. FASEB J 26, 1875-1883   DOI
47 Kehrer JP and Klotz LO (2015) Free radicals and related reactive species as mediators of tissue injury and disease: implications for Health. Crit Rev Toxicol 45, 765-798   DOI
48 Fischer R and Maier O (2015) Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid Med Cell Longev 2015, 610813   DOI
49 Wilson EM and Rotwein P (2006) Control of MyoD function during initiation of muscle differentiation by an autocrine signaling pathway activated by insulin-like growth factor-II. J Biol Chem 281, 29962-29971   DOI
50 Serra C, Palacios D, Mozzetta C et al (2007) Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation. Mol Cell 28, 200-213   DOI
51 Potthoff MJ and Olson EN (2007) MEF2: a central regulator of diverse developmental programs. Develop 134, 4131-4140   DOI
52 Bassel-Duby R and Olson EN (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75, 19-37   DOI
53 Wu H, Naya FJ, McKinsey TA et al (2000) MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J 19, 1963-1973   DOI
54 Potthoff MJ, Wu H, Arnold MA et al (2007) Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J Clin Invest 117, 2459-2467   DOI
55 Han R, Bansal D, Myiyake K et al (2007) Dysferlin-mediated membrane repair protects the heart from stress-induced left ventricular injury. J Clin Invest 117, 1805-1813   DOI
56 Wang X, Xie W, Zhang Y et al (2010) Cardioprotection of ischemia/reperfusion injury by cholesterol-dependent MG53-mediated membrane repair. Circ Res 107, 76-83   DOI
57 Zhu H, Hou J, Roe JL et al (2015) Amelioration of ischemia-reperfusion-induced muscle injury by the recombinant human MG53 protein. Muscle Nerve 52, 852-858   DOI
58 Rommel C, Clarke BA, Zimmermann S et al (1999) Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286, 1738-1741   DOI
59 Goodman CA, Mayhew DL and Hornberger TA (2011) Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal 23, 1896-1906   DOI
60 Yao Y, Zhang B, Zhu H et al (2016) MG53 permeates through blood-brain barrier to protect ischemic brain injury. Oncotarget 7, 22474-22485   DOI
61 Burkin DJ and Wuebbles RD (2012) A molecular bandage for diseased muscle. Sci Transl Med 4, 139fs19   DOI
62 Ma H, Liu J, Bian Z et al (2015) Effect of metabolic syndrome on mitsugumin 53 expression and function. PLoS One 10, e0124128   DOI
63 Ma LL, Zhang FJ, Kong FJ et al (2013) Hypertrophied myocardium is refractory to sevoflurane-induced protection with alteration of reperfusion injury salvage kinase/glycogen synthase kinase 3beta signals. Shock 40, 217-221   DOI
64 Xu Y, Ma LL, Zhou C et al (2013) Hypercholesterolemic myocardium is vulnerable to ischemia-reperfusion injury and refractory to sevoflurane-induced protection. PLoS One 8, e76652   DOI
65 Yuan H, Niu Y, Liu X et al (2013) Proteomic analysis of skeletal muscle in insulin-resistant mice: response to 6-week aerobic exercise. PLoS One 8, e53887   DOI
66 Terauchi Y, Iwamoto K, Tamemoto H et al (1997) Development of non-insulin-dependent diabetes mellitus in the double knockout mice with disruption of insulin receptor substrate-1 and beta cell glucokinase genes. Genetic reconstitution of diabetes as a polygenic disease. J Clin Invest 99, 861-866   DOI
67 Tamemoto H, Kadowaki T, Tobe K et al (1994) Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372, 182-186   DOI
68 Laustsen PG, Michael MD, Crute BE et al (2002) Lipoatrophic diabetes in Irs1(-/-)/Irs3(-/-) double knockout mice. Genes Dev 16, 3213-3222   DOI
69 Liu F, Song R, Feng Y et al (2015) Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor alpha. Circulation 131, 795-804   DOI
70 Long YC, Cheng Z, Copps KD and White MF (2011) Insulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathways. Mol Cell Biol 31, 430-441   DOI
71 Moller DE and Kaufman KD (2005) Metabolic syndrome: a clinical and molecular perspective. Ann Rev Med 56, 45-62   DOI
72 Eriksson JG (1999) Exercise and the treatment of type 2 diabetes mellitus. An update. Sports Med 27, 381-391   DOI
73 Cornier MA, Dabelea D, Hernandez TL et al (2008) The metabolic syndrome. Endocrine reviews 29, 777-822   DOI
74 Cooper ST and McNeil PL (2015) Membrane Repair: Mechanisms and Pathophysiology. Physiol Rev 95, 1205-1240   DOI
75 Giacco F and Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107, 1058-1070   DOI
76 Cooper ST and Head SI (2015) Membrane Injury and Repair in the Muscular Dystrophies. Neuroscientist 21, 653-668   DOI
77 Barbee KA (2005) Mechanical cell injury. Ann N Y Acad Sci 1066, 67-84   DOI
78 Blazek AD, Paleo BJ and Weisleder N (2015) Plasma Membrane Repair: A Central Process for Maintaining Cellular Homeostasis. Physiology (Bethesda) 30, 438-448
79 Bansal D, Miyake K, Vogel SS et al (2003) Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423, 168-172   DOI
80 Doherty KR and McNally EM (2003) Repairing the tears: dysferlin in muscle membrane repair. Trends Mol Med 9, 327-330   DOI
81 Bazan NG, Marcheselli VL and Cole-Edwards K (2005) Brain response to injury and neurodegeneration: endogenous neuroprotective signaling. Ann N Y Acad Sci 1053, 137-147   DOI
82 Cai C, Masumiya H, Weisleder N et al (2009) MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol 11, 56-64   DOI
83 McNeil P (2009) Membrane repair redux: redox of MG53. Nat Cell Biol 11, 7-9   DOI
84 Cai C, Weislder N, Ko JK et al (2009) Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, and dysferlin. J Biol Chem 284, 15894-15902   DOI
85 Cao CM, Zhang Y, Weisleder N et al (2010) MG53 constitutes a primary determinant of cardiac ischemic preconditioning. Circulation 121, 2565-2574   DOI
86 He B, Tang RH, Weisleder N et al (2012) Enhancing muscle membrane repair by gene delivery of MG53 ameliorates muscular dystrophy and heart failure in delta-Sarcoglycan-deficient hamsters. Mol Ther 20, 727-735   DOI
87 Weisleder N, Takizawa N, Lin P et al (2012) Recombinant MG53 protein modulates therapeutic cell membrane repair in treatment of muscular dystrophy. Sci Transl Med 4, 139ra85   DOI
88 Jia Y, Chen K, Lin P et al (2014) Treatment of acute lung injury by targeting MG53-mediated cell membrane repair. Nat Commun 5, 4387
89 Zhang Y, Lv F, Jin L et al (2011) MG53 participates in ischaemic postconditioning through the RISK signalling pathway. Cardiovas Res 91, 108-115   DOI