1 |
Kaser A, Zeissig S and Blumberg RS (2010) Inflammatory bowel disease. Annu Rev Immunol 28, 573-621
DOI
|
2 |
Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8, 411-420
DOI
|
3 |
Hooper LV and Macpherson AJ (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10, 159-169
DOI
|
4 |
Creamer B, Shorter RG and Bamforth J (1961) The turnover and shedding of epithelial cells. I. The turnover in the gastro-intestinal tract. Gut 2, 110-118
DOI
|
5 |
Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003-1007
DOI
|
6 |
van der Flier LG, van Gijn ME, Hatzis P et al (2009) Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 136, 903-912
DOI
|
7 |
Riccio O, van Gijn ME, Bezdek AC et al (2008) Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep 9, 377-383
DOI
|
8 |
Guan Y, Watson AJ, Marchiando AM et al (2011) Redistribution of the tight junction protein ZO-1 during physiological shedding of mouse intestinal epithelial cells. Am J Physiol Cell Physiol 300, C1404-1414
DOI
|
9 |
Nakano K and Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7, 683-694
DOI
|
10 |
Oda E, Ohki R, Murasawa H et al (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053-1058
DOI
|
11 |
Chopra M, Brandl A, Siegmund D et al (2015) Blocking TWEAK-Fn14 interaction inhibits hematopoietic stem cell transplantation-induced intestinal cell death and reduces GVHD. Blood 126, 437-444
DOI
|
12 |
Takahashi N, Vereecke L, Bertrand MJ et al (2014) RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513, 95-99
DOI
|
13 |
Salzman NH, Hung K, Haribhai D et al (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11, 76-83
DOI
|
14 |
Courth LF, Ostaff MJ, Mailander-Sanchez D, Malek NP, Stange EF and Wehkamp J (2015) Crohn's disease-derived monocytes fail to induce Paneth cell defensins. Proc Natl Acad Sci U S A 112, 14000-14005
DOI
|
15 |
Cash HL, Whitham CV, Behrendt CL and Hooper LV (2006) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126-1130
DOI
|
16 |
Koslowski MJ, Beisner J, Stange EF and Wehkamp J (2010) Innate antimicrobial host defense in small intestinal Crohn's disease. Int J Med Microbiol 300, 34-40
DOI
|
17 |
Wehkamp J, Salzman NH, Porter E et al (2005) Reduced Paneth cell alpha-defensins in ileal Crohn's disease. Proc Natl Acad Sci U S A 102, 18129-18134
DOI
|
18 |
Cadwell K, Liu JY, Brown SL et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259-263
DOI
|
19 |
Kaser A, Lee AH, Franke A et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743-756
DOI
|
20 |
Ganz T, Selsted ME, Szklarek D et al (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76, 1427-1435
DOI
|
21 |
Wilde CG, Griffith JE, Marra MN, Snable JL and Scott RW (1989) Purification and characterization of human neutrophil peptide 4, a novel member of the defensin family. J Biol Chem 264, 11200-11203
|
22 |
O'Neil DA, Porter EM, Elewaut D et al (1999) Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium. J Immunol 163, 6718-6724
|
23 |
Imielinski M, Baldassano RN, Griffiths A et al (2009) Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat Genet 41, 1335-1340
DOI
|
24 |
Hase K, Eckmann L, Leopard JD, Varki N and Kagnoff MF (2002) Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect Immun 70, 953-963
DOI
|
25 |
Barrett JC, Hansoul S, Nicolae DL et al (2008) Genomewide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 40, 955-962
DOI
|
26 |
Van Limbergen J, Wilson DC and Satsangi J (2009) The genetics of Crohn's disease. Annu Rev Genomics Hum Genet 10, 89-116
DOI
|
27 |
Peake ST, Bernardo D, Mann ER, Al-Hassi HO, Knight SC and Hart AL (2013) Mechanisms of action of anti-tumor necrosis factor alpha agents in Crohn's disease. Inflamm Bowel Dis 19, 1546-1555
DOI
|
28 |
Tracey D, Klareskog L, Sasso EH, Salfeld JG and Tak PP (2008) Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther 117, 244-279
DOI
|
29 |
Inagaki-Ohara K, Yada S, Takamura N et al (2001) p53-dependent radiation-induced crypt intestinal epithelial cells apoptosis is mediated in part through TNF-TNFR1 system. Oncogene 20, 812-818
DOI
|
30 |
Liu H, Li M, Wang P and Wang F (2011) Blockade of hypoxia-inducible factor-1alpha by YC-1 attenuates interferon-gamma and tumor necrosis factor-alpha-induced intestinal epithelial barrier dysfunction. Cytokine 56, 581-588
DOI
|
31 |
Nagar M, Jacob-Hirsch J, Vernitsky H et al (2010) TNF activates a NF-kappaB-regulated cellular program in human CD45RA- regulatory T cells that modulates their suppressive function. J Immunol 184, 3570-3581
DOI
|
32 |
Mahida YR, Kurlac L, Gallagher A and Hawkey CJ (1991) High circulating concentrations of interleukin-6 in active Crohn's disease but not ulcerative colitis. Gut 32, 1531-1534
DOI
|
33 |
Biancheri P, Brezski RJ, Di Sabatino A et al (2015) Proteolytic cleavage and loss of function of biologic agents that neutralize tumor necrosis factor in the mucosa of patients with inflammatory bowel disease. Gastroenterology 149, 1564-1574 e1563
DOI
|
34 |
Nielsen OH and Ainsworth MA (2013) Tumor necrosis factor inhibitors for inflammatory bowel disease. N Engl J Med 369, 754-762
DOI
|
35 |
Melmed GY and Targan SR (2010) Future biologic targets for IBD: potentials and pitfalls. Nat Rev Gastroenterol Hepatol 7, 110-117
DOI
|
36 |
Mitsuyama K, Sasaki E, Toyonaga A et al (1991) Colonic mucosal interleukin-6 in inflammatory bowel disease. Digestion 50, 104-111
DOI
|
37 |
Yamamoto M, Yoshizaki K, Kishimoto T and Ito H (2000) IL-6 is required for the development of Th1 cell-mediated murine colitis. J Immunol 164, 4878-4882
DOI
|
38 |
Akira S, Nishio Y, Inoue M et al (1994) Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77, 63-71
DOI
|
39 |
Zhong Z, Wen Z and Darnell JE Jr (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264, 95-98
DOI
|
40 |
Takeda K, Kaisho T, Yoshida N, Takeda J, Kishimoto T and Akira S (1998) Stat3 activation is responsible for IL-6-dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell-specific Stat3-deficient mice. J Immunol 161, 4652-4660
|
41 |
Ghildiyal M and Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10, 94-108
DOI
|
42 |
Suzuki A, Hanada T, Mitsuyama K et al (2001) CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J Exp Med 193, 471-481
DOI
|
43 |
Chapman RS, Lourenco PC, Tonner E et al (1999) Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev 13, 2604-2616
DOI
|
44 |
Kim VN, Han J and Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10, 126-139
DOI
|
45 |
Ishizu H, Siomi H and Siomi MC (2012) Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev 26, 2361-2373
DOI
|
46 |
Ha M and Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15, 509-524
DOI
|
47 |
Bushati N and Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23, 175-205
DOI
|
48 |
Saunders MA, Liang H and Li WH (2007) Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A 104, 3300-3305
DOI
|
49 |
Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419
DOI
|
50 |
Chendrimada TP, Gregory RI, Kumaraswamy E et al (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740-744
DOI
|
51 |
Paraskevi A, Theodoropoulos G, Papaconstantinou I, Mantzaris G, Nikiteas N and Gazouli M (2012) Circulating MicroRNA in inflammatory bowel disease. J Crohns Colitis 6, 900-904
DOI
|
52 |
Kohlhaas S, Garden OA, Scudamore C, Turner M, Okkenhaug K and Vigorito E (2009) Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol 182, 2578-2582
DOI
|
53 |
Takagi T, Naito Y, Mizushima K et al (2010) Increased expression of microRNA in the inflamed colonic mucosa of patients with active ulcerative colitis. J Gastroenterol Hepatol 25 Suppl 1, S129-133
DOI
|
54 |
Yang Y, Ma Y, Shi C et al (2013) Overexpression of miR-21 in patients with ulcerative colitis impairs intestinal epithelial barrier function through targeting the Rho GTPase RhoB. Biochem Biophys Res Commun 434, 746-752
DOI
|
55 |
Shi C, Liang Y, Yang J et al (2013) MicroRNA-21 knockout improve the survival rate in DSS induced fatal colitis through protecting against inflammation and tissue injury. PLoS One 8, e66814
DOI
|
56 |
Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA and Rudensky AY (2007) Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445, 936-940
DOI
|
57 |
Singh UP, Murphy AE, Enos RT et al (2014) miR-155 deficiency protects mice from experimental colitis by reducing T helper type 1/type 17 responses. Immunology 143, 478-489
DOI
|
58 |
Pathak S, Grillo AR, Scarpa M et al (2015) MiR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis. Exp Mol Med 47, e164
DOI
|
59 |
Svrcek M, El-Murr N, Wanherdrick K et al (2013) Overexpression of microRNAs-155 and 21 targeting mismatch repair proteins in inflammatory bowel diseases. Carcinogenesis 34, 828-834
DOI
|
60 |
Lyda MH, Noffsinger A, Belli J and Fenoglio-Preiser CM (2000) Microsatellite instability and K-ras mutations in patients with ulcerative colitis. Hum Pathol 31, 665-671
DOI
|
61 |
Johnnidis JB, Harris MH, Wheeler RT et al (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451, 1125-1129
DOI
|
62 |
Coombes JL and Powrie F (2008) Dendritic cells in intestinal immune regulation. Nat Rev Immunol 8, 435-446
DOI
|
63 |
Zhou H, Xiao J, Wu N et al (2015) MicroRNA-223 regulates the differentiation and function of intestinal dendritic cells and macrophages by targeting C/EBPbeta. Cell Rep 13, 1149-1160
DOI
|
64 |
Chen CZ, Li L, Lodish HF and Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83-86
DOI
|
65 |
Lee J, Park EJ, Yuki Y et al (2015) Profiles of microRN Anetworks in intestinal epithelial cells in a mouse model of colitis. Sci Rep 5, 18174
DOI
|
66 |
Nguyen HT, Dalmasso G, Muller S, Carriere J, Seibold F and Darfeuille-Michaud A (2014) Crohn's disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology 146, 508-519
DOI
|
67 |
Archanioti P, Gazouli M, Theodoropoulos G, Vaiopoulou A and Nikiteas N (2011) Micro-RNAs as regulators and possible diagnostic bio-markers in inflammatory bowel disease. J Crohns Colitis 5, 520-524
DOI
|