Browse > Article
http://dx.doi.org/10.5483/BMBRep.2016.49.5.041

MicroRNA-orchestrated pathophysiologic control in gut homeostasis and inflammation  

Lee, Juneyoung (Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo)
Park, Eun Jeong (Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo)
Kiyono, Hiroshi (Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo)
Publication Information
BMB Reports / v.49, no.5, 2016 , pp. 263-269 More about this Journal
Abstract
The intestine represents the largest and most elaborate immune system organ, in which dynamic and reciprocal interplay among numerous immune and epithelial cells, commensal microbiota, and external antigens contributes to establishing both homeostatic and pathologic conditions. The mechanisms that sustain gut homeostasis are pivotal in maintaining gut health in the harsh environment of the gut lumen. Intestinal epithelial cells are critical players in creating the mucosal platform for interplay between host immune cells and luminal stress inducers. Thus, knowledge of the epithelial interface between immune cells and the luminal environment is a prerequisite for a better understanding of gut homeostasis and pathophysiologies such as inflammation. In this review, we explore the importance of the epithelium in limiting or promoting gut inflammation (e.g., inflammatory bowel disease). We also introduce recent findings on how small RNAs such as microRNAs orchestrate pathophysiologic gene regulation.
Keywords
Homeostasis; Inflammation; Intestine; MicroRNA; Pathophysiology;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kaser A, Zeissig S and Blumberg RS (2010) Inflammatory bowel disease. Annu Rev Immunol 28, 573-621   DOI
2 Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8, 411-420   DOI
3 Hooper LV and Macpherson AJ (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10, 159-169   DOI
4 Creamer B, Shorter RG and Bamforth J (1961) The turnover and shedding of epithelial cells. I. The turnover in the gastro-intestinal tract. Gut 2, 110-118   DOI
5 Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003-1007   DOI
6 van der Flier LG, van Gijn ME, Hatzis P et al (2009) Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 136, 903-912   DOI
7 Riccio O, van Gijn ME, Bezdek AC et al (2008) Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep 9, 377-383   DOI
8 Guan Y, Watson AJ, Marchiando AM et al (2011) Redistribution of the tight junction protein ZO-1 during physiological shedding of mouse intestinal epithelial cells. Am J Physiol Cell Physiol 300, C1404-1414   DOI
9 Nakano K and Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7, 683-694   DOI
10 Oda E, Ohki R, Murasawa H et al (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053-1058   DOI
11 Chopra M, Brandl A, Siegmund D et al (2015) Blocking TWEAK-Fn14 interaction inhibits hematopoietic stem cell transplantation-induced intestinal cell death and reduces GVHD. Blood 126, 437-444   DOI
12 Takahashi N, Vereecke L, Bertrand MJ et al (2014) RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513, 95-99   DOI
13 Salzman NH, Hung K, Haribhai D et al (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11, 76-83   DOI
14 Courth LF, Ostaff MJ, Mailander-Sanchez D, Malek NP, Stange EF and Wehkamp J (2015) Crohn's disease-derived monocytes fail to induce Paneth cell defensins. Proc Natl Acad Sci U S A 112, 14000-14005   DOI
15 Cash HL, Whitham CV, Behrendt CL and Hooper LV (2006) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126-1130   DOI
16 Koslowski MJ, Beisner J, Stange EF and Wehkamp J (2010) Innate antimicrobial host defense in small intestinal Crohn's disease. Int J Med Microbiol 300, 34-40   DOI
17 Wehkamp J, Salzman NH, Porter E et al (2005) Reduced Paneth cell alpha-defensins in ileal Crohn's disease. Proc Natl Acad Sci U S A 102, 18129-18134   DOI
18 Cadwell K, Liu JY, Brown SL et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259-263   DOI
19 Kaser A, Lee AH, Franke A et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743-756   DOI
20 Ganz T, Selsted ME, Szklarek D et al (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76, 1427-1435   DOI
21 Wilde CG, Griffith JE, Marra MN, Snable JL and Scott RW (1989) Purification and characterization of human neutrophil peptide 4, a novel member of the defensin family. J Biol Chem 264, 11200-11203
22 O'Neil DA, Porter EM, Elewaut D et al (1999) Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium. J Immunol 163, 6718-6724
23 Imielinski M, Baldassano RN, Griffiths A et al (2009) Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat Genet 41, 1335-1340   DOI
24 Hase K, Eckmann L, Leopard JD, Varki N and Kagnoff MF (2002) Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect Immun 70, 953-963   DOI
25 Barrett JC, Hansoul S, Nicolae DL et al (2008) Genomewide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 40, 955-962   DOI
26 Van Limbergen J, Wilson DC and Satsangi J (2009) The genetics of Crohn's disease. Annu Rev Genomics Hum Genet 10, 89-116   DOI
27 Peake ST, Bernardo D, Mann ER, Al-Hassi HO, Knight SC and Hart AL (2013) Mechanisms of action of anti-tumor necrosis factor alpha agents in Crohn's disease. Inflamm Bowel Dis 19, 1546-1555   DOI
28 Tracey D, Klareskog L, Sasso EH, Salfeld JG and Tak PP (2008) Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther 117, 244-279   DOI
29 Inagaki-Ohara K, Yada S, Takamura N et al (2001) p53-dependent radiation-induced crypt intestinal epithelial cells apoptosis is mediated in part through TNF-TNFR1 system. Oncogene 20, 812-818   DOI
30 Liu H, Li M, Wang P and Wang F (2011) Blockade of hypoxia-inducible factor-1alpha by YC-1 attenuates interferon-gamma and tumor necrosis factor-alpha-induced intestinal epithelial barrier dysfunction. Cytokine 56, 581-588   DOI
31 Nagar M, Jacob-Hirsch J, Vernitsky H et al (2010) TNF activates a NF-kappaB-regulated cellular program in human CD45RA- regulatory T cells that modulates their suppressive function. J Immunol 184, 3570-3581   DOI
32 Mahida YR, Kurlac L, Gallagher A and Hawkey CJ (1991) High circulating concentrations of interleukin-6 in active Crohn's disease but not ulcerative colitis. Gut 32, 1531-1534   DOI
33 Biancheri P, Brezski RJ, Di Sabatino A et al (2015) Proteolytic cleavage and loss of function of biologic agents that neutralize tumor necrosis factor in the mucosa of patients with inflammatory bowel disease. Gastroenterology 149, 1564-1574 e1563   DOI
34 Nielsen OH and Ainsworth MA (2013) Tumor necrosis factor inhibitors for inflammatory bowel disease. N Engl J Med 369, 754-762   DOI
35 Melmed GY and Targan SR (2010) Future biologic targets for IBD: potentials and pitfalls. Nat Rev Gastroenterol Hepatol 7, 110-117   DOI
36 Mitsuyama K, Sasaki E, Toyonaga A et al (1991) Colonic mucosal interleukin-6 in inflammatory bowel disease. Digestion 50, 104-111   DOI
37 Yamamoto M, Yoshizaki K, Kishimoto T and Ito H (2000) IL-6 is required for the development of Th1 cell-mediated murine colitis. J Immunol 164, 4878-4882   DOI
38 Akira S, Nishio Y, Inoue M et al (1994) Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77, 63-71   DOI
39 Zhong Z, Wen Z and Darnell JE Jr (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264, 95-98   DOI
40 Takeda K, Kaisho T, Yoshida N, Takeda J, Kishimoto T and Akira S (1998) Stat3 activation is responsible for IL-6-dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell-specific Stat3-deficient mice. J Immunol 161, 4652-4660
41 Ghildiyal M and Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10, 94-108   DOI
42 Suzuki A, Hanada T, Mitsuyama K et al (2001) CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J Exp Med 193, 471-481   DOI
43 Chapman RS, Lourenco PC, Tonner E et al (1999) Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev 13, 2604-2616   DOI
44 Kim VN, Han J and Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10, 126-139   DOI
45 Ishizu H, Siomi H and Siomi MC (2012) Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev 26, 2361-2373   DOI
46 Ha M and Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15, 509-524   DOI
47 Bushati N and Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23, 175-205   DOI
48 Saunders MA, Liang H and Li WH (2007) Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A 104, 3300-3305   DOI
49 Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419   DOI
50 Chendrimada TP, Gregory RI, Kumaraswamy E et al (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740-744   DOI
51 Paraskevi A, Theodoropoulos G, Papaconstantinou I, Mantzaris G, Nikiteas N and Gazouli M (2012) Circulating MicroRNA in inflammatory bowel disease. J Crohns Colitis 6, 900-904   DOI
52 Kohlhaas S, Garden OA, Scudamore C, Turner M, Okkenhaug K and Vigorito E (2009) Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol 182, 2578-2582   DOI
53 Takagi T, Naito Y, Mizushima K et al (2010) Increased expression of microRNA in the inflamed colonic mucosa of patients with active ulcerative colitis. J Gastroenterol Hepatol 25 Suppl 1, S129-133   DOI
54 Yang Y, Ma Y, Shi C et al (2013) Overexpression of miR-21 in patients with ulcerative colitis impairs intestinal epithelial barrier function through targeting the Rho GTPase RhoB. Biochem Biophys Res Commun 434, 746-752   DOI
55 Shi C, Liang Y, Yang J et al (2013) MicroRNA-21 knockout improve the survival rate in DSS induced fatal colitis through protecting against inflammation and tissue injury. PLoS One 8, e66814   DOI
56 Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA and Rudensky AY (2007) Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445, 936-940   DOI
57 Singh UP, Murphy AE, Enos RT et al (2014) miR-155 deficiency protects mice from experimental colitis by reducing T helper type 1/type 17 responses. Immunology 143, 478-489   DOI
58 Pathak S, Grillo AR, Scarpa M et al (2015) MiR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis. Exp Mol Med 47, e164   DOI
59 Svrcek M, El-Murr N, Wanherdrick K et al (2013) Overexpression of microRNAs-155 and 21 targeting mismatch repair proteins in inflammatory bowel diseases. Carcinogenesis 34, 828-834   DOI
60 Lyda MH, Noffsinger A, Belli J and Fenoglio-Preiser CM (2000) Microsatellite instability and K-ras mutations in patients with ulcerative colitis. Hum Pathol 31, 665-671   DOI
61 Johnnidis JB, Harris MH, Wheeler RT et al (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451, 1125-1129   DOI
62 Coombes JL and Powrie F (2008) Dendritic cells in intestinal immune regulation. Nat Rev Immunol 8, 435-446   DOI
63 Zhou H, Xiao J, Wu N et al (2015) MicroRNA-223 regulates the differentiation and function of intestinal dendritic cells and macrophages by targeting C/EBPbeta. Cell Rep 13, 1149-1160   DOI
64 Chen CZ, Li L, Lodish HF and Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83-86   DOI
65 Lee J, Park EJ, Yuki Y et al (2015) Profiles of microRN Anetworks in intestinal epithelial cells in a mouse model of colitis. Sci Rep 5, 18174   DOI
66 Nguyen HT, Dalmasso G, Muller S, Carriere J, Seibold F and Darfeuille-Michaud A (2014) Crohn's disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology 146, 508-519   DOI
67 Archanioti P, Gazouli M, Theodoropoulos G, Vaiopoulou A and Nikiteas N (2011) Micro-RNAs as regulators and possible diagnostic bio-markers in inflammatory bowel disease. J Crohns Colitis 5, 520-524   DOI