Browse > Article
http://dx.doi.org/10.5483/BMBRep.2016.49.5.036

Introduction to cerebral cavernous malformation: a brief review  

Kim, Jaehong (Department of Biochemistry, School of Medicine, Gachon University)
Publication Information
BMB Reports / v.49, no.5, 2016 , pp. 255-262 More about this Journal
Abstract
The disease known as cerebral cavernous malformations mostly occurs in the central nervous system, and their typical histological presentations are multiple lumen formation and vascular leakage at the brain capillary level, resulting in disruption of the blood-brain barrier. These abnormalities result in severe neurological symptoms such as seizures, focal neurological deficits and hemorrhagic strokes. CCM research has identified 'loss of function' mutations of three ccm genes responsible for the disease and also complex regulation of multiple signaling pathways including the WNT/β-catenin pathway, TGF-β and Notch signaling by the ccm genes. Although CCM research is a relatively new and small scientific field, as CCM research has the potential to regulate systemic blood vessel permeability and angiogenesis including that of the blood-brain barrier, this field is growing rapidly. In this review, I will provide a brief overview of CCM pathogenesis and function of ccm genes based on recent progress in CCM research.
Keywords
Angiogenesis; Central nervous system; Cerebral cavernous malformation; Signaling; Vascular permeability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pozzati E, Acciarri N, Tognetti F, Marliani F and Giangaspero F (1996) Growth, subsequent bleeding, and de novo appearance of cerebral cavernous angiomas. Neurosurgery 38, 662-670   DOI
2 Meliton A, Meng F, Tian Y, Shah AA, Birukova AA and Birukov KG (2015) Role of Krev Interaction Trapped-1 in Prostacyclin-Induced Protection against Lung Vascular Permeability Induced by Excessive Mechanical Forces and Thrombin Receptor Activating Peptide 6. Am J Respir Cell Mol Biol 53, 834-843   DOI
3 Stockton RA, Shenkar R, Awad IA and Ginsberg MH (2010) Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J Exp Med 207, 881-896   DOI
4 Stamatovic SM, Sladojevic N, Keep RF and Andjelkovic AV (2015) PDCD10 (CCM3) regulates brain endothelial barrier integrity in cerebral cavernous malformation type 3: role of CCM3-ERK1/2-cortactin cross-talk. Acta Neuropathol 130, 731-750   DOI
5 Bravi L, Rudini N, Cuttano R et al (2015) Sulindac metabolites decrease cerebrovascular malformations in CCM3-knockout mice. Proc Natl Acad Sci U S A 112, 8421-8426   DOI
6 Glading AJ and Ginsberg MH (2010) Rap1 and its effector KRIT1/CCM1 regulate beta-catenin signaling. Dis Model Mech 3, 73-83   DOI
7 Maddaluno L, Rudini N, Cuttano R et al (2013) EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498, 492-496   DOI
8 Cuttano R, Rudini N, Bravi L et al (2015) KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med 8, 6-24   DOI
9 Schulz GB, Wieland E, Wustehube-Lausch J et al (2015) Cerebral Cavernous Malformation-1 Protein Controls DLL4-Notch3 Signaling Between the Endothelium and Pericytes. Stroke 46, 1337-1343   DOI
10 Stiegler AL, Zhang R, Liu W and Boggon TJ (2014) Structural determinants for binding of sorting nexin 17 (SNX17) to the cytoplasmic adaptor protein Krev interaction trapped 1 (KRIT1). J Biol Chem 289, 25362-25373   DOI
11 Fisher OS, Deng H, Liu D et al (2015) Structure and vascular function of MEKK3-cerebral cavernous malformations 2 complex. Nat Commun 6, 7937   DOI
12 Crose LE, Hilder TL, Sciaky N and Johnson GL (2009) Cerebral cavernous malformation 2 protein promotes smad ubiquitin regulatory factor 1-mediated RhoA degradation in endothelial cells. J Biol Chem 284, 13301-13305   DOI
13 Li X, Ji W, Zhang R, Folta-Stogniew E, Min W and Boggon TJ (2011) Molecular recognition of leucine-aspartate repeat (LD) motifs by the focal adhesion targeting homology domain of cerebral cavernous malformation 3 (CCM3). J Biol Chem 286, 26138-26147   DOI
14 Zhang M, Dong L, Shi Z et al (2013) Structural mechanism of CCM3 heterodimerization with GCKIII kinases. Structure 21, 680-688   DOI
15 Voss K, Stahl S, Hogan BM et al (2009) Functional analyses of human and zebrafish 18-amino acid in-frame deletion pave the way for domain mapping of the cerebral cavernous malformation 3 protein. Hum Mutat 30, 1003-1011   DOI
16 Ceccarelli DF, Laister RC, Mulligan VK et al (2011) CCM3/PDCD10 heterodimerizes with germinal center kinase III (GCKIII) proteins using a mechanism analogous to CCM3 homodimerization. J Biol Chem 286, 25056-25064   DOI
17 Fidalgo M, Fraile M, Pires A, Force T, Pombo C and Zalvide J (2010) CCM3/PDCD10 stabilizes GCKIII proteins to promote Golgi assembly and cell orientation. J Cell Sci 123, 1274-1284   DOI
18 Goitre L, De Luca E, Braggion S et al (2014) KRIT1 loss of function causes a ROS-dependent upregulation of c-Jun. Free Radic Biol Med 68, 134-147   DOI
19 Glading A, Han J, Stockton RA and Ginsberg MH (2007) KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell cell junctions. J Cell Biol 179, 247-254   DOI
20 Moglia A, Goitre L, Gianoglio S et al (2015) Evaluation of the bioactive properties of avenanthramide analogs produced in recombinant yeast. Biofactors 41, 15-27   DOI
21 Goitre L, Balzac F, Degani S et al (2010) KRIT1 regulates the homeostasis of intracellular reactive oxygen species. PLoS One 5, e11786   DOI
22 Baxter SS, Dibble CF, Byrd WC et al (2014) Role of cytoskeletal proteins in cerebral cavernous malformation signaling pathways: a proteomic analysis. Mol Biosyst 10, 1881-1889   DOI
23 Jung KH, Han DM, Jeong SG, Choi MR, Chai YG and Cho GW (2015) Proteomic analysis reveals KRIT1 as a modulator for the antioxidant effects of valproic acid in human bone-marrow mesenchymal stromal cells. Drug Chem Toxicol 38, 286-292   DOI
24 Kim J, Sherman NE, Fox JW and Ginsberg MH (2011) Phosphorylation sites in the cerebral cavernous malformations complex. J Cell Sci 124, 3929-3932   DOI
25 Sahoo T, Johnson EW, Thomas JW et al (1999) Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). Hum Mol Genet 8, 2325-2333   DOI
26 Liquori CL, Berg MJ, Siegel AM et al (2003) Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Am J Hum Genet 73, 1459-1464   DOI
27 Mouchtouris N, Chalouhi N, Chitale A et al (2015) Management of cerebral cavernous malformations: from diagnosis to treatment. ScientificWorldJournal 2015, 808314   DOI
28 Kean MJ, Ceccarelli DF, Goudreault M et al (2011) Structure-function analysis of core STRIPAK Proteins: a signaling complex implicated in Golgi polarization. J Biol Chem 286, 25065-25075   DOI
29 He Y, Zhang H, Yu L et al (2010) Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development. Sci Signal 3, ra26
30 Dibble CF, Horst JA, Malone MH et al (2010) Defining the functional domain of programmed cell death 10 through its interactions with phosphatidylinositol-3,4,5-trisphosphate. PLoS One 5, e11740   DOI
31 McDonald DA, Shi C, Shenkar R et al (2012) Fasudil decreases lesion burden in a murine model of cerebral cavernous malformation disease. Stroke 43, 571-574   DOI
32 Westover MB, Bianchi MT, Eckman MH and Greenberg SM (2011) Statin use following intracerebral hemorrhage: a decision analysis. Arch Neurol 68, 573-579   DOI
33 Mikati AG, Khanna O, Zhang L et al (2015) Vascular permeability in cerebral cavernous malformations. J Cereb Blood Flow Metab 35, 1632-1639   DOI
34 Riant F, Bergametti F, Ayrignac X, Boulday G and Tournier-Lasserve E (2010) Recent insights into cerebral cavernous malformations: the molecular genetics of CCM. FEBS J 277, 1070-1075   DOI
35 Bergametti F, Denier C, Labauge P et al (2005) Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet 76, 42-51   DOI
36 Craig HD, Gunel M, Cepeda O et al (1998) Multilocus linkage identifies two new loci for a mendelian form of stroke, cerebral cavernous malformation, at 7p15-13 and 3q25.2-27. Hum Mol Genet 7, 1851-1858   DOI
37 Dubovsky J, Zabramski JM, Kurth J et al (1995) A gene responsible for cavernous malformations of the brain maps to chromosome 7q. Hum Mol Genet 4, 453-458   DOI
38 Draheim KM, Fisher OS, Boggon TJ and Calderwood DA (2014) Cerebral cavernous malformation proteins at a glance. J Cell Sci 127, 701-707   DOI
39 Spiegler S, Najm J, Liu J et al (2014) High mutation detection rates in cerebral cavernous malformation upon stringent inclusion criteria: one-third of probands are minors. Mol Genet Genomic Med 2, 176-185   DOI
40 Denier C, Labauge P, Bergametti F et al (2006) Genotype-phenotype correlations in cerebral cavernous malformations patients. Ann Neurol 60, 550-556   DOI
41 Riant F, Cecillon M, Saugier-Veber P and Tournier-Lasserve E (2013) CCM molecular screening in a diagnosis context: novel unclassified variants leading to abnormal splicing and importance of large deletions. Neurogenetics 14, 133-141   DOI
42 Mondejar R and Lucas M (2015) Molecular diagnosis in cerebral cavernous malformations. Neurologia [Epub ahead of print]
43 Verlaan DJ, Laurent SB, Sure U et al (2004) CCM1 mutation screen of sporadic cases with cerebral cavernous malformations. Neurology 62, 1213-1215   DOI
44 D'Angelo R, Marini V, Rinaldi C et al (2011) Mutation analysis of CCM1, CCM2 and CCM3 genes in a cohort of Italian patients with cerebral cavernous malformation. Brain Pathol 21, 215-224   DOI
45 D'Angelo R, Alafaci C, Scimone C et al (2013) Sporadic cerebral cavernous malformations: report of further mutations of CCM genes in 40 Italian patients. Biomed Res Int 2013, 459253
46 Tsutsumi S, Ogino I, Miyajima M et al (2013) Genomic causes of multiple cerebral cavernous malformations in a Japanese population. J Clin Neurosci 20, 667-669   DOI
47 Chan AC, Drakos SG, Ruiz OE et al (2011) Mutations in 2 distinct genetic pathways result in cerebral cavernous malformations in mice. J Clin Invest 121, 1871-1881   DOI
48 Yoruk B, Gillers BS, Chi NC and Scott IC (2012) Ccm3 functions in a manner distinct from Ccm1 and Ccm2 in a zebrafish model of CCM vascular disease. Dev Biol 362, 121-131   DOI
49 Song Y, Eng M and Ghabrial AS (2013) Focal defects in single-celled tubes mutant for Cerebral cavernous malformation 3, GCKIII, or NSF2. Dev Cell 25, 507-519   DOI
50 Zawistowski JS, Stalheim L, Uhlik MT et al (2005) CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis. Hum Mol Genet 14, 2521-2531   DOI
51 Fisher OS, Liu W, Zhang R et al (2015) Structural basis for the disruption of the cerebral cavernous malformations 2 (CCM2) interaction with Krev interaction trapped 1 (KRIT1) by disease-associated mutations. J Biol Chem 290, 2842-2853   DOI
52 Kehrer-Sawatzki H, Wilda M, Braun VM, Richter HP and Hameister H (2002) Mutation and expression analysis of the KRIT1 gene associated with cerebral cavernous malformations (CCM1). Acta Neuropathol 104, 231-240
53 Zhu Y, Wu Q, Xu JF et al (2010) Differential angiogenesis function of CCM2 and CCM3 in cerebral cavernous malformations. Neurosurg Focus 29, E1   DOI
54 McDonald DA, Shi C, Shenkar R et al (2014) Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis. Hum Mol Genet 23, 4357-4370   DOI
55 Gault J, Shenkar R, Recksiek P and Awad IA (2005) Biallelic somatic and germ line CCM1 truncating mutations in a cerebral cavernous malformation lesion. Stroke 36, 872-874   DOI
56 Pagenstecher A, Stahl S, Sure U and Felbor U (2009) A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells. Hum Mol Genet 18, 911-918   DOI
57 Jaffe AB and Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21, 247-269   DOI
58 Borikova AL, Dibble CF, Sciaky N et al (2010) Rho kinase inhibition rescues the endothelial cell cerebral cavernous malformation phenotype. J Biol Chem 285, 11760-11764   DOI
59 Faurobert E, Rome C, Lisowska J et al (2013) CCM1-ICAP-1 complex controls beta1 integrin-dependent endothelial contractility and fibronectin remodeling. J Cell Biol 202, 545-561   DOI
60 Whitehead KJ, Chan AC, Navankasattusas S et al (2009) The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med 15, 177-184   DOI
61 Marchi S, Corricelli M, Trapani E et al (2015) Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Mol Med 7, 1403-1417   DOI
62 Wustehube J, Bartol A, Liebler SS et al (2010) Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling. Proc Natl Acad Sci U S A 107, 12640-12645   DOI
63 Brutsch R, Liebler SS, Wustehube J et al (2010) Integrin cytoplasmic domain-associated protein-1 attenuates sprouting angiogenesis. Circ Res 107, 592-601   DOI
64 You C, Sandalcioglu IE, Dammann P, Felbor U, Sure U and Zhu Y (2013) Loss of CCM3 impairs DLL4-Notch signalling: implication in endothelial angiogenesis and in inherited cerebral cavernous malformations. J Cell Mol Med 17, 407-418   DOI
65 DiStefano PV, Kuebel JM, Sarelius IH and Glading AJ (2014) KRIT1 protein depletion modifies endothelial cell behavior via increased vascular endothelial growth factor (VEGF) signaling. J Biol Chem 289, 33054-33065   DOI
66 Zhu Y, Zhao K, Prinz A et al (2015) Loss of endothelial programmed cell death 10 activates glioblastoma cells and promotes tumor growth. Neuro Oncol 18, 538-548   DOI
67 Gore AV, Lampugnani MG, Dye L, Dejana E and Weinstein BM (2008) Combinatorial interaction between CCM pathway genes precipitates hemorrhagic stroke. Dis Model Mech 1, 275-281   DOI
68 Rinaldi C, Bramanti P, Fama A et al (2015) Glyoxalase I A111e, Paraoxonase 1 Q192r and L55m Polymorphisms in Italian Patients with Sporadic Cerebral Cavernous Malformations: A Pilot Study. J Biol Regul Homeost Agents 29, 493-500
69 Guazzi P, Goitre L, Ferro E et al (2012) Identification of the Kelch Family Protein Nd1-L as a Novel Molecular Interactor of KRIT1. PLoS One 7, e44705   DOI
70 Boulday G, Rudini N, Maddaluno L et al (2011) Developmental timing of CCM2 loss influences cerebral cavernous malformations in mice. J Exp Med 208, 1835-1847   DOI
71 McDonald DA, Shenkar R, Shi C et al (2011) A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. Hum Mol Genet 20, 211-222   DOI
72 Rosen JN, Sogah VM, Ye LY and Mably JD (2013) ccm2-like is required for cardiovascular development as a novel component of the Heg-CCM pathway. Dev Biol 376, 74-85   DOI
73 Zhou Z, Rawnsley DR, Goddard LM et al (2015) The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression. Dev Cell 32, 168-180   DOI
74 Cullere X, Plovie E, Bennett PM, MacRae CA and Mayadas TN (2015) The cerebral cavernous malformation proteins CCM2L and CCM2 prevent the activation of the MAP kinase MEKK3. Proc Natl Acad Sci U S A 112, 14284-14289   DOI
75 Stahl S, Gaetzner S, Voss K et al (2008) Novel CCM1, CCM2, and CCM3 mutations in patients with cerebral cavernous malformations: in-frame deletion in CCM2 prevents formation of a CCM1/CCM2/CCM3 protein complex. Hum Mutat 29, 709-717   DOI
76 Zheng X, Riant F, Bergametti F et al (2014) Cerebral cavernous malformations arise independent of the heart of glass receptor. Stroke 45, 1505-1509   DOI
77 Plummer NW, Gallione CJ, Srinivasan S, Zawistowski JS, Louis DN and Marchuk DA (2004) Loss of p53 sensitizes mice with a mutation in Ccm1 (KRIT1) to development of cerebral vascular malformations. Am J Pathol 165, 1509-1518   DOI
78 Shenkar R, Shi C, Rebeiz T et al (2015) Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations. Genet Med 17, 188-196   DOI
79 Voss K, Stahl S, Schleider E et al (2007) CCM3 interacts with CCM2 indicating common pathogenesis for cerebral cavernous malformations. Neurogenetics 8, 249-256   DOI
80 Goudreault M, D'Ambrosio LM, Kean MJ et al (2009) A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol Cell Proteomics 8, 157-171   DOI
81 Edelmann AR, Schwartz-Baxter S, Dibble CF et al (2014) Systems biology and proteomic analysis of cerebral cavernous malformation. Expert Rev Proteomics 11, 395-404   DOI
82 Hilder TL, Malone MH, Bencharit S et al (2007) Proteomic identification of the cerebral cavernous malformation signaling complex. J Proteome Res 6, 4343-4355   DOI
83 Draheim KM, Li X, Zhang R et al (2015) CCM2-CCM3 interaction stabilizes their protein expression and permits endothelial network formation. J Cell Biol 208, 987-1001   DOI
84 Cavalcanti DD, Kalani MY, Martirosyan NL, Eales J, Spetzler RF and Preul MC (2012) Cerebral cavernous malformations: from genes to proteins to disease. J Neurosurg 116, 122-132   DOI
85 Kumar A, Bhandari A and Goswami C (2014) Surveying genetic variants and molecular phylogeny of cerebral cavernous malformation gene, CCM3/PDCD10. Biochem Biophys Res Commun 455, 98-106   DOI
86 Choquet H, Pawlikowska L, Lawton MT and Kim H (2015) Genetics of cerebral cavernous malformations: current status and future prospects. J Neurosurg Sci 59, 211-220
87 Labauge P, Denier C, Bergametti F and Tournier-Lasserve E (2007) Genetics of cavernous angiomas. Lancet Neurol 6, 237-244   DOI
88 Rigamonti D, Hadley MN, Drayer BP et al (1988) Cerebral cavernous malformations. Incidence and familial occurrence. N Engl J Med 319, 343-347   DOI
89 Fisher OS and Boggon TJ (2014) Signaling pathways and the cerebral cavernous malformations proteins: lessons from structural biology. Cell Mol Life Sci 71, 1881-1892   DOI
90 Li X, Zhang R, Zhang H et al (2010) Crystal structure of CCM3, a cerebral cavernous malformation protein critical for vascular integrity. J Biol Chem 285, 24099-24107   DOI
91 Liu W, Draheim KM, Zhang R, Calderwood DA and Boggon TJ (2013) Mechanism for KRIT1 release of ICAP1-mediated suppression of integrin activation. Mol Cell 49, 719-729   DOI
92 Gunel M, Laurans MS, Shin D et al (2002) KRIT1, a gene mutated in cerebral cavernous malformation, encodes a microtubule-associated protein. Proc Natl Acad Sci U S A 99, 10677-10682   DOI
93 Beraud-Dufour S, Gautier R, Albiges-Rizo C, Chardin P and Faurobert E (2007) Krit 1 interactions with microtubules and membranes are regulated by Rap1 and integrin cytoplasmic domain associated protein-1. FEBS J 274, 5518-5532   DOI
94 Liu JJ, Stockton RA, Gingras AR et al (2011) A mechanism of Rap1-induced stabilization of endothelial cell--cell junctions. Mol Biol Cell 22, 2509-2519   DOI
95 Li X, Zhang R, Draheim KM, Liu W, Calderwood DA and Boggon TJ (2012) Structural basis for small G protein effector interaction of Ras-related protein 1 (Rap1) and adaptor protein Krev interaction trapped 1 (KRIT1). J Biol Chem 287, 22317-22327   DOI
96 Gingras AR, Puzon-McLaughlin W and Ginsberg MH (2013) The structure of the ternary complex of Krev interaction trapped 1 (KRIT1) bound to both the Rap1 GTPase and the heart of glass (HEG1) cytoplasmic tail. J Biol Chem 288, 23639-23649   DOI