Browse > Article
http://dx.doi.org/10.5483/BMBRep.2016.49.3.268

The role of lipids in the pathogenesis and treatment of type 2 diabetes and associated co-morbidities  

Erion, Derek M. (Takeda Pharmaceuticals)
Park, Hyun-Jun (Department of Molecular Medicine)
Lee, Hui-Young (Department of Molecular Medicine)
Publication Information
BMB Reports / v.49, no.3, 2016 , pp. 139-148 More about this Journal
Abstract
In the past decade, the incidence of type 2 diabetes (T2D) has rapidly increased, along with the associated cardiovascular complications. Therefore, understanding the pathophysiology underlying T2D, the associated complications and the impact of therapeutics on the T2D development has critical importance for current and future therapeutics. The prevailing feature of T2D is hyperglycemia due to excessive hepatic glucose production, insulin resistance, and insufficient secretion of insulin by the pancreas. These contribute to increased fatty acid influx into the liver and muscle causing accumulation of lipid metabolites. These lipid metabolites cause dyslipidemia and non-alcoholic fatty liver disease, which ultimately contributes to the increased cardiovascular risk in T2D. Therefore, understanding the mechanisms of hepatic insulin resistance and the specific role of liver lipids is critical in selecting and designing the most effective therapeutics for T2D and the associated co-morbidities, including dyslipidemia and cardiovascular disease. Herein, we review the effects and molecular mechanisms of conventional anti-hyperglycemic and lipid-lowering drugs on glucose and lipid metabolism.
Keywords
Cardiovascular disease; Diabetic dyslipidemia; Lipid metabolites; Insulin resistance; Type 2 diabetes;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Monami M, Vitale V, Ambrosio ML et al (2012) Effects on lipid profile of dipeptidyl peptidase 4 inhibitors, pioglitazone, acarbose, and sulfonylureas: meta-analysis of placebo-controlled trials. Adv Ther 29, 736-746   DOI
2 Gerstein HC, Bosch J, Dagenais GR et al (2012) Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med 367, 319-328   DOI
3 Ben-Shlomo S, Zvibel I, Shnell M et al (2011) Glucagonlike peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J Hepatol 54, 1214-1223   DOI
4 Ding X, Saxena NK, Lin S, Gupta NA and Anania FA (2006) Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology 43, 173-181   DOI
5 Mells JE, Fu PP, Sharma S et al (2012) Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet. Am J Physiol Gastrointest Liver Physiol 302, G225-235   DOI
6 Armstrong MJ, Gaunt P, Aithal GP et al (2015) Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet [Epub ahead of print]
7 Wang XC, Gusdon AM, Liu H and Qu S (2014) Effects of glucagon-like peptide-1 receptor agonists on non-alcoholic fatty liver disease and inflammation. World J Gastroenterol 20, 14821-14830   DOI
8 Aroor AR, Habibi J, Ford DA et al (2015) Dipeptidyl peptidase-4 inhibition ameliorates Western diet-induced hepatic steatosis and insulin resistance through hepatic lipid remodeling and modulation of hepatic mitochondrial function. Diabetes 64, 1988-2001   DOI
9 Kato H, Nagai Y, Ohta A et al (2015) Effect of sitagliptin on intrahepatic lipid content and body fat in patients with type 2 diabetes. Diabetes Res Clin Pract 109, 199-205   DOI
10 Macauley M, Hollingsworth KG, Smith FE et al (2015) Effect of vildagliptin on hepatic steatosis. J Clin Endocrinol Metab 100, 1578-1585   DOI
11 Scirica BM, Bhatt DL, Braunwald E et al (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369, 1317-1326   DOI
12 Ferrannini E, Muscelli E, Frascerra S et al (2014) Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest 124, 499-508   DOI
13 Bolinder J, Ljunggren Ö, Johansson L et al (2014) Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab 16, 159-169   DOI
14 Yokono M, Takasu T, Hayashizaki Y et al (2014) SGLT2 selective inhibitor ipragliflozin reduces body fat mass by increasing fatty acid oxidation in high-fat diet-induced obese rats. Eur J Pharmacol 727, 66-74   DOI
15 Neumiller JJ (2014) Empagliflozin: a new sodium-glucose co-transporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. Drugs Context 3, 212-262
16 Bode B, Stenlöf K, Harris S et al (2015) Long-term efficacy and safety of canagliflozin over 104 weeks in patients aged 55-80 years with type 2 diabetes. Diabetes Obes Metab 17, 294-303   DOI
17 Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 373, 2117-2128   DOI
18 Erion DM, Lapworth A, Amor PA et al (2014) The hepatoselective glucokinase activator PF-04991532 ameliorates hyperglycemia without causing hepatic steatosis in diabetic rats. PLoS One 9, e97139   DOI
19 Pfefferkorn JA (2013) Strategies for the design of hepatoselective glucokinase activators to treat type 2 diabetes. Expert Opin Drug Discov 8, 319-330   DOI
20 Sammons MF and Lee EC (2015) Recent progress in the development of small-molecule glucagon receptor antagonists. Bioorg Med Chem Lett 25, 4057-4064   DOI
21 Guan HP, Yang X, Lu K et al (2015) Glucagon receptor antagonism induces increased cholesterol absorption. J Lipid Res 56, 2183-2195   DOI
22 Sazonov V, Maccubbin D, Sisk CM and Canner PL (2013) Effects of niacin on the incidence of new onset diabetes and cardiovascular events in patients with normoglycaemia and impaired fasting glucose. Int J Clin Pract 67, 297-302   DOI
23 McKenney J (2004) New perspectives on the use of niacin in the treatment of lipid disorders. Arch Intern Med 164, 697-705   DOI
24 Capuzzi DM, Morgan JM, Brusco OA Jr and Intenzo CM (2000) Niacin dosing: relationship to benefits and adverse effects. Curr Atheroscler Rep 2, 64-71   DOI
25 Drood JM, Zimetbaum PJ and Frishman WH (1991) Nicotinic-Acid for the Treatment of Hyperlipoproteinemia. J Clin Pharmacol 31, 641-650   DOI
26 Elam MB, Hunninghake DB, Davis KB et al (2000) Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease: the ADMIT study: A randomized trial. Arterial Disease Multiple Intervention Trial. JAMA 284, 1263-1270   DOI
27 Sugiyama S, Fukushima H, Kugiyama K et al (2007) Pravastatin improved glucose metabolism associated with increasing plasma adiponectin in patients with impaired glucose tolerance and coronary artery disease. Atherosclerosis 194, e43-51   DOI
28 Downs JR, Clearfield M, Weis S et al (1998) Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 279, 1615-1622   DOI
29 Shepherd J, Cobbe SM, Ford I et al (1995) Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 333, 1301-1307   DOI
30 McFarlane SI, Muniyappa R, Francisco R and Sowers JR (2002) Clinical review 145: Pleiotropic effects of statins: lipid reduction and beyond. J Clin Endocrinol Metab 87, 1451-1458   DOI
31 Preiss D, Seshasai SR, Welsh P et al (2011) Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA 305, 2556-2564   DOI
32 Okamoto H, Yonemori F, Wakitani K, Minowa T, Maeda K and Shinkai H (2000) A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature 406, 203-207   DOI
33 Sattar N, Preiss D, Murray HM et al (2010) Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 375, 735-742   DOI
34 Mullard A (2012) Cholesterol-lowering blockbuster candidates speed into Phase III trials. Nat Rev Drug Discov 11, 817-819   DOI
35 Roth EM, Taskinen MR, Ginsberg HN et al (2014) Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: results of a 24 week, double-blind, randomized Phase 3 trial. Int J Cardiol 176, 55-61   DOI
36 de Grooth GJ, Kuivenhoven JA, Stalenhoef AF et al (2002) Efficacy and safety of a novel cholesteryl ester transfer protein inhibitor, JTT-705, in humans - A randomized phase II dose-response study. Circulation 105, 2159-2165   DOI
37 Nicholls SJ, Brewer HB, Kastelein JJ et al (2011) Effects of the CETP Inhibitor Evacetrapib Administered as Monotherapy or in Combination With Statins on HDL and LDL Cholesterol A Randomized Controlled Trial. JAMA 306, 2099-2109   DOI
38 Barter PJ, Rye KA, Tardif JC et al (2011) Effect of torcetrapib on glucose, insulin, and hemoglobin A1c in subjects in the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial. Circulation 124, 555-562   DOI
39 Kharitonenkov A and Shanafelt AB (2009) FGF21: a novel prospect for the treatment of metabolic diseases. Curr Opin Investig Drugs 10, 359-364
40 Lin Z, Tian H, Lam KS et al (2013) Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 17, 779-789   DOI
41 Bernardo B, Lu M, Bandyopadhyay G et al (2015) FGF21 does not require interscapular brown adipose tissue and improves liver metabolic profile in animal models of obesity and insulin-resistance. Sci Rep 5, 11382   DOI
42 Gaich G, Chien JY, Fu H et al (2013) The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 18, 333-340   DOI
43 Petersen KF, Dufour S, Hariri A et al (2010) Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. N Engl J Med 362, 1082-1089   DOI
44 Petersen KF, Dufour S, Feng J et al (2006) Increased prevalence of insulin resistance and nonalcoholic fatty liver disease in Asian-Indian men. Proc Natl Acad Sci U S A 103, 18273-18277   DOI
45 Lee HY, Birkenfeld AL, Jornayvaz FR et al (2011) Apolipoprotein CIII overexpressing mice are predisposed to diet-induced hepatic steatosis and hepatic insulin resistance. Hepatology 54, 1650-1660   DOI
46 Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG and Tybjærg-Hansen A (2014) Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med 371, 32-41   DOI
47 Crosby J, Peloso GM, Auer PL et al (2014) Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med 371, 22-31   DOI
48 Timpson NJ, Walter K, Min JL et al (2014) A rare variant in APOC3 is associated with plasma triglyceride and VLDL levels in Europeans. Nat Commun 5, 4871   DOI
49 Cao J, Zhou Y, Peng H et al (2011) Targeting Acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) with small molecule inhibitors for the treatment of metabolic diseases. J Biol Chem 286, 41838-41851   DOI
50 Gaudet D, Brisson D, Tremblay K et al (2014) Targeting APOC3 in the familial chylomicronemia syndrome. N Engl J Med 371, 2200-2206   DOI
51 Chen HC and Farese RV Jr (2005) Inhibition of triglyceride synthesis as a treatment strategy for obesity: lessons from DGAT1-deficient mice. Arterioscler Thromb Vasc Biol 25, 482-486   DOI
52 Yamamoto T, Yamaguchi H, Miki H et al (2010) Coenzyme A: diacylglycerol acyltransferase 1 inhibitor ameliorates obesity, liver steatosis, and lipid metabolism abnormality in KKAy mice fed high-fat or high-carbohydrate diets. Eur J Pharmacol 640, 243-249   DOI
53 Choi CS1, Savage DB, Kulkarni A et al (2007) Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J Biol Chem 282, 22678-22688   DOI
54 Denison H, Nilsson C, Kujacic M et al (2013) Proof of mechanism for the DGAT1 inhibitor AZD7687: results from a first-time-in-human single-dose study. Diabetes Obes Metab 15, 136-143   DOI
55 Wierzbicki AS, Hardman TC and Viljoen A (2012) New lipid-lowering drugs: an update. Int J Clin Pract 66, 270-280   DOI
56 Lee YJ, Ko EH, Kim JE et al (2012) Nuclear receptor PPARgamma-regulated monoacylglycerol O-acyltransferase 1 (MGAT1) expression is responsible for the lipid accumulation in diet-induced hepatic steatosis. Proc Natl Acad Sci U S A 109, 13656-13661   DOI
57 Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U and Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103, 137-149   DOI
58 Hall AM, Soufi N, Chambers KT et al (2014) Abrogating monoacylglycerol acyltransferase activity in liver improves glucose tolerance and hepatic insulin signaling in obese mice. Diabetes 63, 2284-2296   DOI
59 Hall AM, Kou K, Chen Z et al (2012) Evidence for regulated monoacylglycerol acyltransferase expression and activity in human liver. J Lipid Res 53, 990-999   DOI
60 Zimmet P, Alberti KG and Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414, 782-787   DOI
61 Roger VL, Go AS, Lloyd-Jones DM et al (2012) Heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation 125, e2-e220   DOI
62 UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837-853   DOI
63 Bonora E, Formentini G, Calcaterra F et al (2002) HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects: prospective data from the Verona Diabetes Complications Study. Diabetes Care 25, 1135-1141   DOI
64 Wajchenberg BL (2007) beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev 28, 187-218   DOI
65 Rothman DL, Shulman RG and Shulman GI (1992) 31P nuclear magnetic resonance measurements of muscle glucose-6-phosphate. Evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-dependent diabetes mellitus. J Clin Invest 89, 1069-1075   DOI
66 Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA and Shulman RG (1990) Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 322, 223-228   DOI
67 Hwang JH, Perseghin G, Rothman DL et al (1995) Impaired net hepatic glycogen synthesis in insulin-dependent diabetic subjects during mixed meal ingestion. A 13C nuclear magnetic resonance spectroscopy study. J Clin Invest 95, 783-787   DOI
68 DeFronzo RA, Ferrannini E and Simonson DC (1989) Simonson, Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism 38, 387-395   DOI
69 Landau BR, Wahren J, Chandramouli V, Schumann WC, Ekberg K and Kalhan SC (1996) Contributions of gluconeogenesis to glucose production in the fasted state. J Clin Invest 98, 378-385   DOI
70 DeFronzo RA and Tripathy D (2009) Tripathy, Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32, S157-S163   DOI
71 Perry RJ, Camporez JP, Kursawe R et al (2015) Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell, 160, 745-758   DOI
72 Wu L and Parhofer KG (2014) Diabetic dyslipidemia. Metabolism 63, 1469-1479   DOI
73 Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595-1607   DOI
74 Samuel VT and Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852-871   DOI
75 Chaurasia B and Summers SA (2015) Ceramides - Lipotoxic Inducers of Metabolic Disorders. Trends Endocrinol Metab 26, 538-550   DOI
76 Samuel VT, Liu ZX, Qu X et al (2004) Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 279, 32345-32353   DOI
77 Magkos F, Su X, Bradley D et al (2012) Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology 142, 1444-1446 e2   DOI
78 Haus JM, Kashyap SR, Kasumov T et al (2009) Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 58, 337-343   DOI
79 Jurczak MJ, Lee AH, Jornayvaz FR et al (2012) Dissociation of inositol-requiring enzyme (IRE1alpha)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice. J Biol Chem 287, 2558-2567   DOI
80 Lee SY, Hong IK, Kim BR et al (2015) Activation of sphingosine kinase 2 by endoplasmic reticulum stress ameliorates hepatic steatosis and insulin resistance in mice. Hepatology 62, 135-146   DOI
81 Adams JM 2nd, Pratipanawatr T, Berria R et al (2004) Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53, 25-31   DOI
82 Mooradian AD (2009) Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab 5, 150-159   DOI
83 Semple RK, Sleigh A, Murgatroyd PR et al (2009) Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. J Clin Invest 119, 315-322
84 Rader DJ (2007) Effect of insulin resistance, dyslipidemia, and intra-abdominal adiposity on the development of cardiovascular disease and diabetes mellitus. Am J Med 120, S12-S18   DOI
85 Adiels M, Olofsson SO, Taskinen MR and Borén J (2008) Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol 28, 1225-1236   DOI
86 Bang KB and Cho YK (2015) Comorbidities and Metabolic Derangement of NAFLD. J Lifestyle Med 5, 7-13   DOI
87 American Diabetes Association (2009) Standards of medical care in diabetes--2009. Diabetes Care 32, S13-S61   DOI
88 Koo SH (2013) Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis. Clin Mol Hepatol 19, 210-215   DOI
89 Athyros VG, Tziomalos K, Katsiki N, Doumas M, Karagiannis A and Mikhailidis DP (2015) Cardiovascular risk across the histological spectrum and the clinical manifestations of non-alcoholic fatty liver disease: An update. World J Gastroenterol 21, 6820-6834   DOI
90 Williams CD, Stengel J, Asike MI et al (2011) Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140, 124-131   DOI
91 Klip A and Leiter LA (1990) Cellular mechanism of action of metformin. Diabetes Care 13, 696-704   DOI
92 Stumvoll M, Nurjhan N, Perriello G, Dailey G and Gerich JE (1995) Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med 333, 550-554   DOI
93 Kim YD, Park KG, Lee YS et al (2008) Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes 57, 306-314   DOI
94 Zhou G, Myers R, Li Y et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108, 1167-1174   DOI
95 Wulffelé MG, Kooy A, de Zeeuw D, Stehouwer CD and Gansevoort RT (2004) The effect of metformin on blood pressure, plasma cholesterol and triglycerides in type 2 diabetes mellitus: a systematic review. J Intern Med 256, 1-14   DOI
96 Soccio RE, Chen ER and Lazar MA (2014) Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab 20, 573-591   DOI
97 Shields WW, Thompson KE, Grice GA, Harrison SA and Coyle WJ (2009) The Effect of Metformin and Standard Therapy versus Standard Therapy alone in Nondiabetic Patients with Insulin Resistance and Nonalcoholic Steatohepatitis (NASH): A Pilot Trial. Therap Adv Gastroenterol 2, 157-163   DOI
98 Madiraju AK, Erion DM, Rahimi Y et al (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542-546   DOI
99 Fujita T, Sugiyama Y, Taketomi S et al (1983) Reduction of insulin resistance in obese and/or diabetic animals by 5-[4-(1-methylcycloheylmethoxy)benzyl]-thiazolidine-2,4-dione (ADD-3878, U-63,287, ciglitazone), a new antidiabetic agent. Diabetes 32, 804-810   DOI
100 Chao L, Marcus-Samuels B, Mason MM et al (2000) Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J Clin Invest 106, 1221-1228   DOI
101 Ohno H, Shinoda K, Spiegelman BM and Kajimura S (2012) PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 15, 395-404   DOI
102 Kahn SE, Haffner SM, Heise MA et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355, 2427-2443   DOI
103 Belfort R, Harrison SA, Brown K et al (2006) A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med 355, 2297-2307   DOI
104 Sanyal AJ, Chalasani N, Kowdley KV et al (2010) Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 362, 1675-1685   DOI
105 Colca JR, VanderLugt JT, Adams WJ et al (2013) Clinical proof-of-concept study with MSDC-0160, a prototype mTOT-modulating insulin sensitizer. Clin Pharmacol Ther 93, 352-359   DOI
106 Ratziu V, Giral P, Jacqueminet S et al (2008) Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial. Gastroenterology 135, 100-110   DOI
107 Cariou B, Charbonnel B and Staels B (2012) Thiazolidinediones and PPARgamma agonists: time for a reassessment. Trends Endocrinol Metab 23, 205-215   DOI
108 Gray LR, Sultana MR, Rauckhorst AJ et al (2015) Hepatic Mitochondrial Pyruvate Carrier 1 Is Required for Efficient Regulation of Gluconeogenesis and Whole-Body Glucose Homeostasis. Cell Metab 22, 669-681   DOI
109 Kramer W, Müller G and Geisen K (1996) Characterization of the molecular mode of action of the sulfonylurea, glimepiride, at beta-cells. Horm Metab Res 28, 464-468   DOI
110 DeFronzo RA and Simonson DC (1984) Oral sulfonylurea agents suppress hepatic glucose production in non-insulin-dependent diabetic individuals. Diabetes Care 7, 72-80   DOI
111 Taskinen MR, Beltz WF, Harper I et al (1986) Effects of NIDDM on very-low-density lipoprotein triglyceride and apolipoprotein B metabolism. Studies before and after sulfonylurea therapy. Diabetes 35, 1268-1277   DOI
112 Howard BV, Xiaoren P, Harper I, Foley JE, Cheung MC and Taskinen MR (1985) Effect of sulfonylurea therapy on plasma lipids and high-density lipoprotein composition in non-insulin-dependent diabetes mellitus. Am J Med 79, 78-85   DOI