Browse > Article
http://dx.doi.org/10.5483/BMBRep.2016.49.2.265

Structure biology of selective autophagy receptors  

Kim, Byeong-Won (Department of Life Sciences, Korea University)
Kwon, Do Hoon (Department of Life Sciences, Korea University)
Song, Hyun Kyu (Department of Life Sciences, Korea University)
Publication Information
BMB Reports / v.49, no.2, 2016 , pp. 73-80 More about this Journal
Abstract
Autophagy is a process tightly regulated by various autophagy-related proteins. It is generally classified into non-selective and selective autophagy. Whereas non-selective autophagy is triggered when the cell is under starvation, selective autophagy is involved in eliminating dysfunctional organelles, misfolded and/or ubiquitylated proteins, and intracellular pathogens. These components are recognized by autophagy receptors and delivered to phagophores. Several selective autophagy receptors have been identified and characterized. They usually have some common domains, such as motif, a specific cargo interacting (ubiquitin-dependent or ubiquitin-independent) domain. Recently, structural data of these autophagy receptors has been described, which provides an insight of their function in the selective autophagic process. In this review, we summarize the most up-to-date findings about the structure-function of autophagy receptors that regulates selective autophagy.
Keywords
Autophagy; LIR motif; Receptor; Selective autophagy; Ubiquitin binding domain;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kaiser SE, Mao K, Taherbhoy AM et al (2012) Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat Struct Mol Biol 19, 1242-1249   DOI
2 Kim JH, Hong SB, Lee JK et al (2015) Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners. Autophagy 11, 75-87   DOI
3 Popelka H and Klionsky DJ (2015) Post-translationally-modified structures in the autophagy machinery: an integrative perspective. FEBS J 282, 3474-3488   DOI
4 Kim JH and Song HK (2015) Swapping of interaction partners with ATG5 for autophagosome maturation. BMB Rep 48, 129-130   DOI
5 Levine B, Mizushima N and Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469, 323-335   DOI
6 Yang Z and Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12, 814-822   DOI
7 Kirkin V, McEwan DG, Novak I and Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34, 259-269   DOI
8 Kraft C, Peter M and Hofmann K (2010) Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol 12, 836-841   DOI
9 Lu K, Psakhye I and Jentsch S (2014) Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family. Cell 158, 549-563   DOI
10 Pankiv S, Clausen TH, Lamark T et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282, 24131-24145   DOI
11 Kirkin V, Lamark T, Sou YS et al (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33, 505-516   DOI
12 Korac J, Schaeffer V, Kovacevic I et al (2013) Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J Cell Sci 126, 580-592   DOI
13 Sarraf SA, Raman M, Guarani-Pereira V et al (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372-376   DOI
14 Wong YC and Holzbaur EL (2014) Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci U S A 111, E4439-4448   DOI
15 Lazarou M, Sliter DA, Kane LA et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309-314   DOI
16 Novak I, Kirkin V, McEwan DG et al (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11, 45-51   DOI
17 Quinsay MN, Thomas RL, Lee Y and Gustafsson AB (2010) Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy 6, 855-862   DOI
18 Kanki T, Wang K, Cao Y, Baba M and Klionsky DJ (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17, 98-109   DOI
19 Motley AM, Nuttall JM and Hettema EH (2012) Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J 31, 2852-2868   DOI
20 Okamoto K, Kondo-Okamoto N and Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17, 87-97   DOI
21 Kraft C, Deplazes A, Sohrmann M and Peter M (2008) Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 10, 602-610   DOI
22 Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S and Gustafsson AB (2012) Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 287, 19094-19104   DOI
23 Deosaran E, Larsen KB, Hua R et al (2013) NBR1 acts as an autophagy receptor for peroxisomes. J Cell Sci 126, 939-952   DOI
24 Jiang S, Wells CD and Roach PJ (2011) Starch-binding do main-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem Biophys Res Commun 413, 420-425   DOI
25 Khaminets A, Heinrich T, Mari M et al (2015) Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522, 354-358   DOI
26 Kurth I, Pamminger T, Hennings JC et al (2009) Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat Genet 41, 1179-1181   DOI
27 Mochida K, Oikawa Y, Kimura Y et al (2015) Receptormediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522, 359-362   DOI
28 Wild P, Farhan H, McEwan DG et al (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228-233   DOI
29 Singh R, Kaushik S, Wang Y et al (2009) Autophagy regulates lipid metabolism. Nature 458, 1131-1135   DOI
30 Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T and Brumell JH (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 183, 5909-5916   DOI
31 Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N and Randow F (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 10, 1215-1221   DOI
32 Thurston TL, Wandel MP, von Muhlinen N, Foeglein A and Randow F (2012) Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414-418   DOI
33 Behrends C, Sowa ME, Gygi SP and Harper JW (2010) Network organization of the human autophagy system. Nature 466, 68-76   DOI
34 Wild P, McEwan DG and Dikic I (2014) The LC3 interactome at a glance. J Cell Sci 127, 3-9   DOI
35 Xu Z, Yang L, Xu S, Zhang Z and Cao Y (2015) The receptor proteins: pivotal roles in selective autophagy. Acta Biochim Biophys Sin (Shanghai) 47, 571-580   DOI
36 Slobodkin MR and Elazar Z (2013) The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays Biochem 55, 51-64   DOI
37 Bjorkoy G, Lamark T, Brech A et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171, 603-614   DOI
38 Moscat J, Diaz-Meco MT and Wooten MW (2007) Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci 32, 95-100   DOI
39 Noda NN, Kumeta H, Nakatogawa H et al (2008) Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13, 1211-1218   DOI
40 Kuusisto E, Salminen A and Alafuzoff I (2001) Ubiquitinbinding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport 12, 2085-2090   DOI
41 Zatloukal K, Stumptner C, Fuchsbichler A et al (2002) p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol 160, 255-263   DOI
42 Komatsu M, Kurokawa H, Waguri S et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12, 213-223
43 Campbell IG, Nicolai HM, Foulkes WD et al (1994) A novel gene encoding a B-box protein within the BRCA1 region at 17q21.1. Hum Mol Genet 3, 589-594   DOI
44 Lamark T, Kirkin V, Dikic I and Johansen T (2009) NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8, 1986-1990   DOI
45 Korioth F, Gieffers C, Maul GG and Frey J (1995) Molecular characterization of NDP52, a novel protein of the nuclear domain 10, which is redistributed upon virus infection and interferon treatment. J Cell Biol 130, 1-13   DOI
46 von Muhlinen N, Akutsu M, Ravenhill BJ et al (2012) LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol Cell 48, 329-342   DOI
47 Xie X, Li F, Wang Y et al (2015) Molecular basis of ubiquitin recognition by the autophagy receptor CALCOCO2. Autophagy 11, 1775-1789   DOI
48 Kim BW, Hong SB, Kim JH, Kwon do H and Song HK (2013) Structural basis for recognition of autophagic receptor NDP52 by the sugar receptor galectin-8. Nat Commun 4, 1613   DOI
49 Watson RO, Manzanillo PS and Cox JS (2012) Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803-815   DOI
50 Weidberg H and Elazar Z (2011) TBK1 mediates crosstalk between the innate immune response and autophagy. Sci Signal 4, pe39   DOI
51 Mostowy S, Sancho-Shimizu V, Hamon MA et al (2011) p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J Biol Chem 286, 26987-26995   DOI
52 Majcher V, Goode A, James V and Layfield R (2015) Autophagy receptor defects and ALS-FTLD. Mol Cell Neurosci 66, 43-52   DOI
53 Tumbarello DA, Waxse BJ, Arden SD, Bright NA, Kendrick-Jones J and Buss F (2012) Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat Cell Biol 14, 1024-1035   DOI
54 Heo JM, Ordureau A, Paulo JA, Rinehart J and Harper JW (2015) The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. Mol Cell 60, 7-20   DOI
55 Zhang J and Ney PA (2009) Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16, 939-946   DOI
56 Kanki T (2010) Nix, a receptor protein for mitophagy in mammals. Autophagy 6, 433-435   DOI
57 Noda NN, Ohsumi Y and Inagaki F (2010) Atg8-family interacting motif crucial for selective autophagy. FEBS Lett 584, 1379-1385   DOI
58 Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V and Elazar Z (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29, 1792-1802   DOI
59 Ichimura Y, Kumanomidou T, Sou YS et al (2008) Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283, 22847-22857   DOI
60 Shaid S, Brandts CH, Serve H and Dikic I (2013) Ubiquitination and selective autophagy. Cell Death Differ 20, 21-30   DOI
61 Rozenknop A, Rogov VV, Rogova NY et al (2011) Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1. J Mol Biol 410, 477-487   DOI
62 Rogov VV, Suzuki H, Fiskin E et al (2013) Structural basis for phosphorylation-triggered autophagic clearance of Salmonella. Biochem J 454, 459-466   DOI
63 Manzanillo PS, Ayres JS, Watson RO et al (2013) The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501, 512-516   DOI
64 Ciani B, Layfield R, Cavey JR, Sheppard PW and Searle MS (2003) Structure of the ubiquitin-associated domain of p62 (SQSTM1) and implications for mutations that cause Paget's disease of bone. J Biol Chem 278, 37409-37412   DOI
65 Isogai S, Morimoto D, Arita K et al (2011) Crystal structure of the ubiquitin-associated (UBA) domain of p62 and its interaction with ubiquitin. J Biol Chem 286, 31864-31874   DOI
66 Long J, Gallagher TR, Cavey JR et al (2008) Ubiquitin recognition by the ubiquitin-associated domain of p62 involves a novel conformational switch. J Biol Chem 283, 5427-5440   DOI
67 Walinda E, Morimoto D, Sugase K, Konuma T, Tochio H and Shirakawa M (2014) Solution structure of the ubiquitin-associated (UBA) domain of human autophagy receptor NBR1 and its interaction with ubiquitin and polyubiquitin. J Biol Chem 289, 13890-13902   DOI
68 Moscat J, Diaz-Meco MT, Albert A and Campuzano S (2006) Cell signaling and function organized by PB1 domain interactions. Mol Cell 23, 631-640   DOI
69 Michielssens S, Peters JH, Ban D et al (2014) A designed conformational shift to control protein binding specificity. Angew Chem Int Ed Engl 53, 10367-10371   DOI
70 Saio T, Yokochi M and Inagaki F (2009) The NMR structure of the p62 PB1 domain, a key protein in autophagy and NF-kappaB signaling pathway. J Biomol NMR 45, 335-341   DOI
71 Saio T, Yokochi M, Kumeta H and Inagaki F (2010) PCS-based structure determination of protein-protein complexes. J Biomol NMR 46, 271-280   DOI
72 Ciuffa R, Lamark T, Tarafder AK et al (2015) The selective autophagy receptor p62 forms a flexible filamentous helical scaffold. Cell Rep 11, 748-758   DOI
73 Muller S, Kursula I, Zou P and Wilmanns M (2006) Crystal structure of the PB1 domain of NBR1. FEBS Lett 580, 341-344   DOI
74 Cha-Molstad H, Sung KS, Hwang J et al (2015) Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat Cell Biol 17, 917-929   DOI
75 Cha-Molstad H, Kwon YT and Kim BY (2015) Amino-terminal arginylation as a degradation signal for selective autophagy. BMB Rep 48, 487-488   DOI
76 Katsuragi Y, Ichimura Y and Komatsu M (2015) p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J 282, 4672-4678   DOI
77 Jain A, Lamark T, Sjottem E et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285, 22576-22591   DOI
78 Janssen BJ, Huizinga EG, Raaijmakers HC et al (2005) Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437, 505-511   DOI
79 Ichimura Y, Waguri S, Sou YS et al (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 51, 618-631   DOI
80 Nogales E and Scheres SH (2015) Cryo-EM: A Unique Tool for the Visualization of Macromolecular Complexity. Mol Cell 58, 677-689   DOI
81 Jo C, Gundemir S, Pritchard S, Jin YN, Rahman I and Johnson GV (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5, 3496
82 Li S, Wandel MP, Li F et al (2013) Sterical hindrance promotes selectivity of the autophagy cargo receptor NDP52 for the danger receptor galectin-8 in antibacterial autophagy. Sci Signal 6, ra9   DOI
83 Rambo RP and Tainer JA (2013) Super-resolution in solution X-ray scattering and its applications to structural systems biology. Annu Rev Biophys 42, 415-441   DOI
84 Ren J, Wang J, Wang Z and Wu J (2014) Structural and biochemical insights into the homotypic PB1-PB1 complex between PKCzeta and p62. Sci China Life Sci 57, 69-80   DOI
85 Evans CL, Long JE, Gallagher TR, Hirst JD and Searle MS (2008) Conformation and dynamics of the three-helix bundle UBA domain of p62 from experiment and simulation. Proteins 71, 227-240   DOI
86 Long J, Garner TP, Pandya MJ et al (2010) Dimerisation of the UBA domain of p62 inhibits ubiquitin binding and regulates NF-kappaB signalling. J Mol Biol 396, 178-194   DOI
87 Ohsumi Y (2014) Historical landmarks of autophagy research. Cell Res 24, 9-23   DOI
88 Mueller-Dieckmann C, Panjikar S, Schmidt A et al (2007) On the routine use of soft X-rays in macromolecular crystallography. Part IV. Efficient determination of anomalous substructures in biomacromolecules using longer X-ray wavelengths. Acta Crystallogr D Biol Crystallogr 63, 366-380   DOI
89 Nakatogawa H, Suzuki K, Kamada Y and Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10, 458-467   DOI
90 Klionsky DJ (2008) Autophagy revisited: a conversation with Christian de Duve. Autophagy 4, 740-743   DOI
91 Mizushima N, Noda T, Yoshimori T et al (1998) A protein conjugation system essential for autophagy. Nature 395, 395-398   DOI
92 Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2, 211-216   DOI
93 Hong SB, Kim BW, Lee KE et al (2011) Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat Struct Mol Biol 18, 1323-1330   DOI
94 Suzuki H, Kaizuka T, Mizushima N and Noda NN (2015) Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in autophagy initiation. Nat Struct Mol Biol 22, 572-580   DOI
95 Fujioka Y, Suzuki SW, Yamamoto H et al (2014) Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat Struct Mol Biol 21, 513-521   DOI
96 Hong SB, Kim BW, Kim JH and Song HK (2012) Structure of the autophagic E2 enzyme Atg10. Acta Crystallogr D Biol Crystallogr 68, 1409-1417   DOI
97 Kaiser SE, Qiu Y, Coats JE, Mao K, Klionsky DJ and Schulman BA (2013) Structures of Atg7-Atg3 and Atg7-Atg10 reveal noncanonical mechanisms of E2 recruitment by the autophagy E1. Autophagy 9, 778-780   DOI
98 Hurley JH and Schulman BA (2014) Atomistic autophagy: the structures of cellular self-digestion. Cell 157, 300-311   DOI
99 Klionsky DJ and Schulman BA (2014) Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat Struct Mol Biol 21, 336-345   DOI