Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.9.128

Cellular ubiquitin pool dynamics and homeostasis  

Park, Chul-Woo (Department of Life Science, University of Seoul)
Ryu, Kwon-Yul (Department of Life Science, University of Seoul)
Publication Information
BMB Reports / v.47, no.9, 2014 , pp. 475-482 More about this Journal
Abstract
Ubiquitin (Ub) is a versatile signaling molecule that plays important roles in a variety of cellular processes. Cellular Ub pools, which are composed of free Ub and Ub conjugates, are in dynamic equilibrium inside cells. In particular, increasing evidence suggests that Ub homeostasis, or the maintenance of free Ub above certain threshold levels, is important for cellular function and survival under normal or stress conditions. Accurate determination of various Ub species, including levels of free Ub and specific Ub chain linkages, have become possible in biological specimens as a result of the introduction of the proteomic approach using mass spectrometry. This technology has facilitated research on dynamic properties of cellular Ub pools and has provided tools for in-depth investigation of Ub homeostasis. In this review, we have also discussed the consequences of the disruption of Ub pool dynamics and homeostasis via deletion of polyubiquitin genes or mutations of deubiquitinating enzymes. The common consequence was a reduced availability of free Ub and a significant impact on the function and viability of cells. These observations further indicate that the levels of free Ub are important determinants for cellular protection.
Keywords
Dynamics; Homeostasis; Free ubiquitin; Polyubiquitin gene; Ubiquitin; Ubiquitin conjugates;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gong, B., Cao, Z., Zheng, P., Vitolo, O. V., Liu, S., Staniszewski, A., Moolman, D., Zhang, H., Shelanski, M. and Arancio, O. (2006) Ubiquitin hydrolase Uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory. Cell 126, 775-788.   DOI   ScienceOn
2 Wilson, S. M., Bhattacharyya, B., Rachel, R. A., Coppola, V., Tessarollo, L., Householder, D. B., Fletcher, C. F., Miller, R. J., Copeland, N. G. and Jenkins, N. A. (2002) Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nat. Genet. 32, 420-425.   DOI   ScienceOn
3 Chen, P. C., Qin, L. N., Li, X. M., Walters, B. J., Wilson, J. A., Mei, L. and Wilson, S. M. (2009) The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions. J. Neurosci. 29, 10909-10919.   DOI   ScienceOn
4 Crimmins, S., Jin, Y., Wheeler, C., Huffman, A. K., Chapman, C., Dobrunz, L. E., Levey, A., Roth, K. A., Wilson, J. A. and Wilson, S. M. (2006) Transgenic rescue of ataxia mice with neuronal-specific expression of ubiquitin-specific protease 14. J. Neurosci. 26, 11423-11431.   DOI   ScienceOn
5 Bizzi, A., Schaetzle, B., Patton, A., Gambetti, P. and Autilio-Gambetti, L. (1991) Axonal transport of two major components of the ubiquitin system: free ubiquitin and ubiquitin carboxyl-terminal hydrolase PGP 9.5. Brain Res. 548, 292-299.   DOI   ScienceOn
6 Chen, P. C., Bhattacharyya, B. J., Hanna, J., Minkel, H., Wilson, J. A., Finley, D., Miller, R. J. and Wilson, S. M. (2011) Ubiquitin homeostasis is critical for synaptic development and function. J. Neurosci. 31, 17505-17513.   DOI
7 Walters, B. J., Campbell, S. L., Chen, P. C., Taylor, A. P., Schroeder, D. G., Dobrunz, L. E., Artavanis-Tsakonas, K., Ploegh, H. L., Wilson, J. A., Cox, G. A. and Wilson, S. M. (2008) Differential effects of Usp14 and Uch-L1 on the ubiquitin proteasome system and synaptic activity. Mol. Cell. Neurosci. 39, 539-548.   DOI   ScienceOn
8 Ryu, K. Y., Fujiki, N., Kazantzis, M., Garza, J. C., Bouley, D. M., Stahl, A., Lu, X. Y., Nishino, S. and Kopito, R. R. (2010) Loss of polyubiquitin gene Ubb leads to metabolic and sleep abnormalities in mice. Neuropathol. Appl. Neurobiol. 36, 285-299.
9 Ryu, K. Y., Garza, J. C., Lu, X. Y., Barsh, G. S. and Kopito, R. R. (2008) Hypothalamic neurodegeneration and adult-onset obesity in mice lacking the Ubb polyubiquitin gene. Proc. Natl. Acad. Sci. U.S.A. 105, 4016-4021.   DOI   ScienceOn
10 Ryu, K. Y., Sinnar, S. A., Reinholdt, L. G., Vaccari, S., Hall, S., Garcia, M. A., Zaitseva, T. S., Bouley, D. M., Boekelheide, K., Handel, M. A., Conti, M. and Kopito, R. R. (2008) The mouse polyubiquitin gene Ubb is essential for meiotic progression. Mol. Cell. Biol. 28, 1136-1146.   DOI   ScienceOn
11 Park, C. W., Ryu, H. W. and Ryu, K. Y. (2012) Locus coeruleus neurons are resistant to dysfunction and degeneration by maintaining free ubiquitin levels although total ubiquitin levels decrease upon disruption of polyubiquitin gene Ubb. Biochem. Biophys. Res. Commun. 418, 541-546.   DOI   ScienceOn
12 Oh, C., Park, S., Lee, E. K. and Yoo, Y. J. (2013) Downregulation of ubiquitin level via knockdown of polyubiquitin gene Ubb as potential cancer therapeutic intervention. Sci. Rep. 3, 2623.   DOI
13 Wilkinson, K. D., Lee, K. M., Deshpande, S., Duerksen-Hughes, P., Boss, J. M. and Pohl, J. (1989) The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246, 670-673.   DOI
14 Liu, Y., Fallon, L., Lashuel, H. A., Liu, Z. and Lansbury, P. T., Jr. (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell 111, 209-218.   DOI   ScienceOn
15 Ye, Y. and Rape, M. (2009) Building ubiquitin chains: E2 enzymes at work. Nat. Rev. Mol. Cell Biol. 10, 755-764.   DOI   ScienceOn
16 Saigoh, K., Wang, Y. L., Suh, J. G., Yamanishi, T., Sakai, Y., Kiyosawa, H., Harada, T., Ichihara, N., Wakana, S., Kikuchi, T. and Wada, K. (1999) Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat. Genet. 23, 47-51.
17 Newton, K., Matsumoto, M. L., Wertz, I. E., Kirkpatrick, D. S., Lill, J. R., Tan, J., Dugger, D., Gordon, N., Sidhu, S. S., Fellouse, F. A., Komuves, L., French, D. M., Ferrando, R. E., Lam, C., Compaan, D., Yu, C., Bosanac, I., Hymowitz, S. G., Kelley, R. F. and Dixit, V. M. (2008) Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134, 668-678.   DOI   ScienceOn
18 Komander, D. (2009) The emerging complexity of protein ubiquitination. Biochem. Soc. Trans. 37, 937-953.   DOI   ScienceOn
19 Husnjak, K. and Dikic, I. (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291-322.   DOI   ScienceOn
20 Xu, P., Duong, D. M., Seyfried, N. T., Cheng, D., Xie, Y., Robert, J., Rush, J., Hochstrasser, M., Finley, D. and Peng, J. (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133-145.   DOI   ScienceOn
21 Finley, D., Ozkaynak, E. and Varshavsky, A. (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035-1046.   DOI   ScienceOn
22 Hanna, J., Leggett, D. S. and Finley, D. (2003) Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Mol. Cell. Biol. 23, 9251-9261.   DOI
23 Dantuma, N. P., Groothuis, T. A., Salomons, F. A. and Neefjes, J. (2006) A dynamic ubiquitin equilibrium couples proteasomal activity to chromatin remodeling. J. Cell Biol. 173, 19-26.   DOI
24 Ryu, K. Y., Maehr, R., Gilchrist, C. A., Long, M. A., Bouley, D. M., Mueller, B., Ploegh, H. L. and Kopito, R. R. (2007) The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress tolerance. EMBO J. 26, 2693-2706.   DOI   ScienceOn
25 Park, H., Yoon, M. S. and Ryu, K. Y. (2013) Disruption of polyubiquitin gene Ubc leads to defective proliferation of hepatocytes and bipotent fetal liver epithelial progenitor cells. Biochem. Biophys. Res. Commun. 435, 434-440.   DOI   ScienceOn
26 Carlson, N., Rogers, S. and Rechsteiner, M. (1987) Microinjection of ubiquitin: changes in protein degradation in HeLa cells subjected to heat-shock. J. Cell Biol. 104, 547-555.   DOI   ScienceOn
27 Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D. and Gygi, S. P. (2003) A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921-926.   DOI   ScienceOn
28 Kirkpatrick, D. S., Denison, C. and Gygi, S. P. (2005) Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nat. Cell Biol. 7, 750-757.   DOI   ScienceOn
29 Kirkpatrick, D. S., Gerber, S. A. and Gygi, S. P. (2005) The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35, 265-273.   DOI   ScienceOn
30 Bennett, E. J., Shaler, T. A., Woodman, B., Ryu, K. Y., Zaitseva, T. S., Becker, C. H., Bates, G. P., Schulman, H. and Kopito, R. R. (2007) Global changes to the ubiquitin system in Huntington's disease. Nature 448, 704-708.   DOI   ScienceOn
31 Yao, T. and Cohen, R. E. (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403-407.   DOI   ScienceOn
32 Kim, W., Bennett, E. J., Huttlin, E. L., Guo, A., Li, J., Possemato, A., Sowa, M. E., Rad, R., Rush, J., Comb, M. J., Harper, J. W. and Gygi, S. P. (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325-340.   DOI   ScienceOn
33 Udeshi, N. D., Mani, D. R., Eisenhaure, T., Mertins, P., Jaffe, J. D., Clauser, K. R., Hacohen, N. and Carr, S. A. (2012) Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. Mol. Cell. Proteomics 11, 148-159.   DOI
34 Reyes-Turcu, F. E., Ventii, K. H. and Wilkinson, K. D. (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78, 363-397.   DOI   ScienceOn
35 Swaminathan, S., Amerik, A. Y. and Hochstrasser, M. (1999) The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. Mol. Biol. Cell 10, 2583-2594.   DOI
36 Kimura, Y., Yashiroda, H., Kudo, T., Koitabashi, S., Murata, S., Kakizuka, A. and Tanaka, K. (2009) An inhibitor of a deubiquitinating enzyme regulates ubiquitin homeostasis. Cell 137, 549-559.   DOI   ScienceOn
37 Vijay-Kumar, S., Bugg, C. E. and Cook, W. J. (1987) Structure of ubiquitin refined at 1.8 A resolution. J. Mol. Biol. 194, 531-544.   DOI
38 Weissman, A. M., Shabek, N. and Ciechanover, A. (2011) The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation. Nat. Rev. Mol. Cell Biol. 12, 605-620.   DOI   ScienceOn
39 Leggett, D. S., Hanna, J., Borodovsky, A., Crosas, B., Schmidt, M., Baker, R. T., Walz, T., Ploegh, H. and Finley, D. (2002) Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10, 495-507.   DOI   ScienceOn
40 Anderson, C., Crimmins, S., Wilson, J. A., Korbel, G. A., Ploegh, H. L. and Wilson, S. M. (2005) Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice. J. Neurochem. 95, 724-731.   DOI   ScienceOn
41 Lee, M. J., Lee, B. H., Hanna, J., King, R. W. and Finley, D. (2011) Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol. Cell. Proteomics 10, R110 003871.   DOI
42 Hanna, J., Meides, A., Zhang, D. P. and Finley, D. (2007) A ubiquitin stress response induces altered proteasome composition. Cell 129, 747-759.   DOI   ScienceOn
43 Hicke, L. (2001) Protein regulation by monoubiquitin. Nat. Rev. Mol. Cell Biol. 2, 195-201.   DOI   ScienceOn
44 Pickart, C. M. and Fushman, D. (2004) chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610-616.   DOI   ScienceOn
45 Amerik, A. Y. and Hochstrasser, M. (2004) Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta 1695, 189-207.   DOI   ScienceOn
46 Komander, D., Clague, M. J. and Urbe, S. (2009) Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550-563.   DOI   ScienceOn
47 Wiborg, O., Pedersen, M. S., Wind, A., Berglund, L. E., Marcker, K. A. and Vuust, J. (1985) The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J. 4, 755-759.
48 Ryu, K. Y., Baker, R. T. and Kopito, R. R. (2006) Ubiquitin-specific protease 2 as a tool for quantification of total ubiquitin levels in biological specimens. Anal. Biochem. 353, 153-155.   DOI   ScienceOn
49 Redman, K. L. and Rechsteiner, M. (1989) Identification of the long ubiquitin extension as ribosomal protein S27a. Nature 338, 438-440.   DOI   ScienceOn
50 Ohtani-Kaneko, R., Asahara, M., Takada, K., Kanda, T., Iigo, M., Hara, M., Yokosawa, H., Ohkawa, K. and Hirata, K. (1996) growth factor (NGF) induces increase in multi-ubiquitin chains and concomitant decrease in free ubiquitin in nuclei of PC12h. Neurosci. Res. 26, 349-355.   DOI   ScienceOn
51 Fornace, A. J., Jr., Alamo, I., Jr., Hollander, M. C. and Lamoreaux, E. (1989) Ubiquitin mRNA is a major stress-induced transcript in mammalian cells. Nucleic Acids Res. 17, 1215-1230.   DOI   ScienceOn
52 Bond, U. and Schlesinger, M. J. (1986) The chicken ubiquitin gene contains a heat shock promoter and expresses an unstable mRNA in heat-shocked cells. Mol. Cell. Biol. 6, 4602-4610.   DOI
53 Baker, R. T. and Board, P. G. (1991) The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes. Nucleic Acids Res. 19, 1035-1040.   DOI   ScienceOn
54 Hershko, A. and Ciechanover, A. (1998) The ubiquitin system. Annu. Rev. Biochem. 67, 425-479.   DOI   ScienceOn
55 Osaka, H., Wang, Y. L., Takada, K., Takizawa, S., Setsuie, R., Li, H., Sato, Y., Nishikawa, K., Sun, Y. J., Sakurai, M., Harada, T., Hara, Y., Kimura, I., Chiba, S., Namikawa, K., Kiyama, H., Noda, M., Aoki, S. and Wada, K. (2003) Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum. Mol. Genet. 12, 1945-1958.   DOI   ScienceOn
56 Kaiser, S. E., Riley, B. E., Shaler, T. A., Trevino, R. S., Becker, C. H., Schulman, H. and Kopito, R. R. (2011) Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nat. Methods 8, 691-696.   DOI   ScienceOn
57 Verma, R., Aravind, L., Oania, R., McDonald, W. H., Yates, J. R., 3rd, Koonin, E. V. and Deshaies, R. J. (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611-615.   DOI   ScienceOn