Parthenolide inhibits osteoclast differentiation and bone resorbing activity by down-regulation of NFATc1 induction and c-Fos stability, during RANKL-mediated osteoclastogenesis |
Kim, Ju-Young
(Imaging Science-based Lung and Bone Diseases Research Center,)
Cheon, Yoon-Hee (Department of Anatomy, Wonkwang University School of Medicine) Yoon, Kwon-Ha (Imaging Science-based Lung and Bone Diseases Research Center,) Lee, Myeung Su (Imaging Science-based Lung and Bone Diseases Research Center,) Oh, Jaemin (Imaging Science-based Lung and Bone Diseases Research Center,) |
1 | Judd, H. L., Meldrum, D. R., Deftos, L. J. and Henderson, B. E. (1983) Estrogen replacement therapy: indications and complications. Ann. Intern. Med. 98, 195-205. DOI ScienceOn |
2 | Kim, K., Lee, S. H., Kim, J. H., Choi, Y. and Kim, N. (2008) NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol. Endocrinol. 22, 176-185. DOI ScienceOn |
3 | Saftig, P., Hunziker, E., Wehmeyer, O., Jones, S., Boyde, A., Rommerskirch, W., Moritz, J. D., Schu, P. and von Figura, K. (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 95, 13453-13458. DOI ScienceOn |
4 | Yeon, J. T., Choi, S. W., Park, K. I., Choi, M. K., Kim, J. J., Youn, B. S., Lee, M. S. and Oh, J. (2012) Glutaredoxin2 isoform b (Glrx2b) promotes RANKL-induced osteoclastogenesis through activation of the p38-MAPK signaling pathway. BMB Rep. 45, 171-176. 과학기술학회마을 DOI ScienceOn |
5 | Yip, K. H., Zheng, M. H., Feng, H. T., Steer, J. H., Joyce, D. A. and Xu, J. (2004) Sesquiterpene lactone parthenolide blocks lipopolysaccharide-induced osteolysis through the suppression of NF-kappaB activity. J. Bone Miner. Res. 19, 1905-1916. DOI ScienceOn |
6 | Knopp-Sihota, J. A., Cummings, G. G., Homik, J. and Voaklander, D. (2013) The association between serious upper gastrointestinal bleeding and incident bisphosphonate use: a population-based nested cohort study. BMC Geriatr. 13, 36. DOI ScienceOn |
7 | Franzoso, G., Carlson, L., Xing, L., Poljak, L., Shores, E. W., Brown, K. D., Leonardi, A., Tran, T., Boyce, B. F. and Siebenlist, U. (1997) Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev. 11, 3482-3496. DOI ScienceOn |
8 | Soysa, N. S., Alles, N., Weih, D., Lovas, A., Mian, A. H., Shimokawa, H., Yasuda, H., Weih, F., Jimi, E., Ohya, K. amd Aoki, K. (2010) The pivotal role of the alternative NF-kappaB pathway in maintenance of basal bone homeostasis and osteoclastogenesis. J. Bone Miner. Res. 25, 809-818. |
9 | Kim, J. H., Kim, K., Jin, H. M., Youn, B. U., Song, I., Choi, H. S. and Kim, N. (2008) Upstream stimulatory factors regulate OSCAR gene expression in RANKL-mediated osteoclast differentiation. J. Mol. Biol. 383, 502-511. DOI ScienceOn |
10 | Matsuo, K., Galson, D. L., Zhao, C., Peng, L., Laplace, C., Wang, K. Z., Bachler, M. A., Amano, H., Aburatani, H., Ishikawa, H. and Wagner, E. F. (2004) Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J. Biol. Chem. 279, 26475-26480. DOI ScienceOn |
11 | Wong, B. R., Josien, R., Lee, S. Y., Vologodskaia, M., Steinman, R. M. and Choi, Y. (1998) The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. J. Biol. Chem. 273, 28355-28359. DOI ScienceOn |
12 | Matsumoto, M., Sudo, T., Saito, T., Osada, H. and Tsujimoto, M. (2000) Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J. Biol. Chem. 275, 31155-31161. DOI ScienceOn |
13 | Wong, B. R., Besser, D., Kim, N., Arron, J. R., Vologodskaia, M., Hanafusa, H. and Choi, Y. (1999) TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol. Cell 4, 1041-1049. DOI ScienceOn |
14 | Bible, J. E., Wegner, A., McClure, J. M., Kadakia, R. J., Richards, J. E., Bauer, J. M. and Mir, H. R. (2013) One-year mortality after acetabular fractures in elderly patients presenting to a level-one trauma center. J. Orthop. Trauma [Epub ahead of print]. |
15 | Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E. F., Mak, T. W., Kodama, T. and Taniguchi, T. (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889-901. DOI ScienceOn |
16 | Koyama, T., Nakajima, C., Nishimoto, S., Takami, M., Woo, J. T. and Yazawa, K. (2012) Suppressive effects of the leaf of Terminalia catappa L. on osteoclast differentiation in vitro and bone weight loss in vivo. J. Nutr. Sci. Vitaminol. 58, 129-135. DOI |
17 | Zhao, Y., Huai, Y., Jin, J., Geng, M. and Li, J. X. (2011) Quinoxaline derivative of oleanolic acid inhibits osteoclastic bone resorption and prevents ovariectomy-induced bone loss. Menopause 18, 690-697. DOI ScienceOn |
18 | Wang, C. B., Lin, C. F., Liang, W. M., Cheng, C. F., Chang, Y. J., Wu, H. C., Wu, T. N. and Leu, T. H. (2013) Excess mortality after hip fracture among the elderly in Taiwan: A nationwide population-based cohort study. Bone 56, 147-153. DOI ScienceOn |
19 | Quinn, J. M., Elliott, J., Gillespie, M. T. and Martin, T. J. (1998) A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology 139, 4424-4427. DOI |
20 | Lee, T. H., Fevold, K. L., Muguruma, Y., Lottsfeldt, J. L. and Lee, M. Y. (1994) Relative roles of osteoclast colony-stimulating factor and macrophage colony-stimulating factor in the course of osteoclast development. Exp. Hematol. 22, 66-73. |
21 | Matsumoto, M., Sudo, T., Maruyama, M., Osada, H. and Tsujimoto, M. (2000) Activation of p38 mitogen-activated protein kinase is crucial in osteoclastogenesis induced by tumor necrosis factor. FEBS Lett. 486, 23-28. DOI ScienceOn |
22 | Lange, A. W. and Yutzey, K. E. (2006) NFATc1 expression in the developing heart valves is responsive to the RANKL pathway and is required for endocardial expression of cathepsin K. Dev. Biol. 292, 407-417. DOI ScienceOn |