Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.8.206

Parthenolide inhibits osteoclast differentiation and bone resorbing activity by down-regulation of NFATc1 induction and c-Fos stability, during RANKL-mediated osteoclastogenesis  

Kim, Ju-Young (Imaging Science-based Lung and Bone Diseases Research Center,)
Cheon, Yoon-Hee (Department of Anatomy, Wonkwang University School of Medicine)
Yoon, Kwon-Ha (Imaging Science-based Lung and Bone Diseases Research Center,)
Lee, Myeung Su (Imaging Science-based Lung and Bone Diseases Research Center,)
Oh, Jaemin (Imaging Science-based Lung and Bone Diseases Research Center,)
Publication Information
BMB Reports / v.47, no.8, 2014 , pp. 451-456 More about this Journal
Abstract
Parthenolide, a natural product derived from Feverfew, prevents septic shock and inflammation. We aimed to identify the effects of parthenolide on the RANKL (receptor activator of $NF-{\kappa}B$ ligand)-induced differentiation and bone resorbing activity of osteoclasts. In this study, parthenolide dose-dependently inhibited RANKL-mediated osteoclast differentiation in BMMs, without any evidence of cytotoxicity and the phosphorylation of p38, ERK, and $I{\kappa}B$, as well as $I{\kappa}B$ degradation by RANKL treatment. Parthenolide suppressed the expression of NFATc1, OSCAR, TRAP, DC-STAMP, and cathepsin K in RANKL-treated BMMs. Furthermore, parthenolide down-regulated the stability of c-Fos protein, but could not suppress the expression of c-Fos. Overexpression of NFATc1 and c-Fos in BMMs reversed the inhibitory effect of parthenolide on RANKL-mediated osteoclast differentiation. Parthenolide also inhibited the bone resorbing activity of mature osteoclasts. Parthenolide inhibits the differentiation and bone-resolving activity of osteoclast by RANKL, suggesting its potential therapeutic value for bone destructive disorders associated with osteoclast-mediated bone resorption.
Keywords
Bone disorders; c-Fos; NFATc1; Osteoclase differentiation; Parthenolide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Judd, H. L., Meldrum, D. R., Deftos, L. J. and Henderson, B. E. (1983) Estrogen replacement therapy: indications and complications. Ann. Intern. Med. 98, 195-205.   DOI   ScienceOn
2 Kim, K., Lee, S. H., Kim, J. H., Choi, Y. and Kim, N. (2008) NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol. Endocrinol. 22, 176-185.   DOI   ScienceOn
3 Saftig, P., Hunziker, E., Wehmeyer, O., Jones, S., Boyde, A., Rommerskirch, W., Moritz, J. D., Schu, P. and von Figura, K. (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 95, 13453-13458.   DOI   ScienceOn
4 Yeon, J. T., Choi, S. W., Park, K. I., Choi, M. K., Kim, J. J., Youn, B. S., Lee, M. S. and Oh, J. (2012) Glutaredoxin2 isoform b (Glrx2b) promotes RANKL-induced osteoclastogenesis through activation of the p38-MAPK signaling pathway. BMB Rep. 45, 171-176.   과학기술학회마을   DOI   ScienceOn
5 Yip, K. H., Zheng, M. H., Feng, H. T., Steer, J. H., Joyce, D. A. and Xu, J. (2004) Sesquiterpene lactone parthenolide blocks lipopolysaccharide-induced osteolysis through the suppression of NF-kappaB activity. J. Bone Miner. Res. 19, 1905-1916.   DOI   ScienceOn
6 Knopp-Sihota, J. A., Cummings, G. G., Homik, J. and Voaklander, D. (2013) The association between serious upper gastrointestinal bleeding and incident bisphosphonate use: a population-based nested cohort study. BMC Geriatr. 13, 36.   DOI   ScienceOn
7 Franzoso, G., Carlson, L., Xing, L., Poljak, L., Shores, E. W., Brown, K. D., Leonardi, A., Tran, T., Boyce, B. F. and Siebenlist, U. (1997) Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev. 11, 3482-3496.   DOI   ScienceOn
8 Soysa, N. S., Alles, N., Weih, D., Lovas, A., Mian, A. H., Shimokawa, H., Yasuda, H., Weih, F., Jimi, E., Ohya, K. amd Aoki, K. (2010) The pivotal role of the alternative NF-kappaB pathway in maintenance of basal bone homeostasis and osteoclastogenesis. J. Bone Miner. Res. 25, 809-818.
9 Kim, J. H., Kim, K., Jin, H. M., Youn, B. U., Song, I., Choi, H. S. and Kim, N. (2008) Upstream stimulatory factors regulate OSCAR gene expression in RANKL-mediated osteoclast differentiation. J. Mol. Biol. 383, 502-511.   DOI   ScienceOn
10 Matsuo, K., Galson, D. L., Zhao, C., Peng, L., Laplace, C., Wang, K. Z., Bachler, M. A., Amano, H., Aburatani, H., Ishikawa, H. and Wagner, E. F. (2004) Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J. Biol. Chem. 279, 26475-26480.   DOI   ScienceOn
11 Wong, B. R., Josien, R., Lee, S. Y., Vologodskaia, M., Steinman, R. M. and Choi, Y. (1998) The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. J. Biol. Chem. 273, 28355-28359.   DOI   ScienceOn
12 Matsumoto, M., Sudo, T., Saito, T., Osada, H. and Tsujimoto, M. (2000) Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J. Biol. Chem. 275, 31155-31161.   DOI   ScienceOn
13 Wong, B. R., Besser, D., Kim, N., Arron, J. R., Vologodskaia, M., Hanafusa, H. and Choi, Y. (1999) TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol. Cell 4, 1041-1049.   DOI   ScienceOn
14 Bible, J. E., Wegner, A., McClure, J. M., Kadakia, R. J., Richards, J. E., Bauer, J. M. and Mir, H. R. (2013) One-year mortality after acetabular fractures in elderly patients presenting to a level-one trauma center. J. Orthop. Trauma [Epub ahead of print].
15 Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E. F., Mak, T. W., Kodama, T. and Taniguchi, T. (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889-901.   DOI   ScienceOn
16 Koyama, T., Nakajima, C., Nishimoto, S., Takami, M., Woo, J. T. and Yazawa, K. (2012) Suppressive effects of the leaf of Terminalia catappa L. on osteoclast differentiation in vitro and bone weight loss in vivo. J. Nutr. Sci. Vitaminol. 58, 129-135.   DOI
17 Zhao, Y., Huai, Y., Jin, J., Geng, M. and Li, J. X. (2011) Quinoxaline derivative of oleanolic acid inhibits osteoclastic bone resorption and prevents ovariectomy-induced bone loss. Menopause 18, 690-697.   DOI   ScienceOn
18 Wang, C. B., Lin, C. F., Liang, W. M., Cheng, C. F., Chang, Y. J., Wu, H. C., Wu, T. N. and Leu, T. H. (2013) Excess mortality after hip fracture among the elderly in Taiwan: A nationwide population-based cohort study. Bone 56, 147-153.   DOI   ScienceOn
19 Quinn, J. M., Elliott, J., Gillespie, M. T. and Martin, T. J. (1998) A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology 139, 4424-4427.   DOI
20 Lee, T. H., Fevold, K. L., Muguruma, Y., Lottsfeldt, J. L. and Lee, M. Y. (1994) Relative roles of osteoclast colony-stimulating factor and macrophage colony-stimulating factor in the course of osteoclast development. Exp. Hematol. 22, 66-73.
21 Matsumoto, M., Sudo, T., Maruyama, M., Osada, H. and Tsujimoto, M. (2000) Activation of p38 mitogen-activated protein kinase is crucial in osteoclastogenesis induced by tumor necrosis factor. FEBS Lett. 486, 23-28.   DOI   ScienceOn
22 Lange, A. W. and Yutzey, K. E. (2006) NFATc1 expression in the developing heart valves is responsive to the RANKL pathway and is required for endocardial expression of cathepsin K. Dev. Biol. 292, 407-417.   DOI   ScienceOn