Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.6.177

Expression of a set of glial cell-specific markers in the Drosophila embryonic central nervous system  

Ahn, Hui Jeong (Department of Chemistry, Konkuk University)
Jeon, Sang-Hak (Department of Biology Education, Seoul National University)
Kim, Sang Hee (Department of Chemistry, Konkuk University)
Publication Information
BMB Reports / v.47, no.6, 2014 , pp. 354-359 More about this Journal
Abstract
The types of glia in the central nervous system (CNS) of the Drosophila embryo include longitudinal glia (LG), cell body glia (CBG), and peripheral glia (PG). Transcription factors, such as glial cell missing and reverse polarity, are well-established general glial cell markers. Only a few glial cell-specific markers have been identified in the Drosophila embryonic CNS, thus far. In the present study, we employed the glial cell-specific markers for LG (vir-1/CG5453 and CG31235), CBG (fabp/CG6783 and CG11902), and PG (CG2310 and moody/CG4322), and comprehensively analyzed their expression patterns, during the embryonic CNS development. Our study validated the specificity of a set of glial markers, and further revealed their spatio-temporal expression patterns, which will aid in the understanding of the developmental lineage, and investigating their role in the development and homeostasis of the Drosophila CNS in vivo.
Keywords
Drosophila; Expression; Gene; Glia; Markers;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Stacey, S. M., Muraro, N. I., Peco, E., Labbe, A., Thomas, G. B., Baines, R. A., van Meyel, D. J. (2010) Drosophila glial glutamate transporter eaat1 is regulated by fringe-mediated notch signaling and is essential for larval locomotion. J. Neurosci. 30, 14446-14457.   DOI   ScienceOn
2 Schwabe, T., Bainton, R. J., Fetter, R. D., Heberlein, U. and Gaul U. (2005) GPCR signaling is required for blood-brain barrier formation in Drosophila. Cell 123, 133-144.   DOI   ScienceOn
3 O'Neill, J. W. and Bier, E. (1994) Double in situ hybridization using biotin and digoxigenin tagged RNA probes. Biotechniques 17, 873-875.
4 Lehmann, R. and Tautz, D. (1994) In situ hybridization to RNA; in Methods in Cell Biology Vol. 44, Goldstein, L. S. B., Fyrberg, E. A. (eds.), pp. 576-597, Academic Press, San Diego, USA.
5 Freeman, M. R. and Doherty, J. (2006) Glial cell biology in Drosophila and vertebrates. Trends. Neurosci. 29, 82-90.   DOI   ScienceOn
6 Stork, T., Bernardos, R. and Freeman, M. R. (2012) Analysis of glial cell development and function in Drosophila; in Cold Spring Harbor Protocols, Zhang, B., Freeman, M. R. and Waddell, S. (eds.), pp. 53-74, Cold Spring Harbor Laboratory Press, New York, USA.
7 Ito, K., Urban, J. and Technau, G. M. (1995) Distribution, classification, and development of Drosophila glial cells in the late embryonic and early larval ventral nerve cord. Roux's Arch. Dev. Biol. 204, 284-307.   DOI   ScienceOn
8 Beckervordersandforth, R. M., Rickert, C., Altenhein, B. and Technau, G. M. (2008) Subtypes of glial cells in the Drosophila embryonic ventral nerve cord as related to lineage and gene expression. Mech. Dev. 125, 542-557.   DOI   ScienceOn
9 Hosoya, T., Takizawa, K., Nitta, K. and Hotta, Y. (1995) glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell 82, 1025-1036.   DOI   ScienceOn
10 Jones, B. W., Fetter, R. J., Tear, G. and Goodman, C. S. (1995) glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell 82, 1013-1023.   DOI   ScienceOn
11 Vincent, S., Vonesch, J. L. and Giangrande, A. (1996) Glide directs glial fate commitment and cell fate switch between neurones and glia. Development 122, 131-139.
12 Egger, B., Leemans, R., Loop, T., Kammermeier, L., Fan, Y., Radimerski, T., Strahm, M. C., Certa, U. and Reichert, H. (2002) Gliogenesis in Drosophila: genome-wide analysis of downstream genes of glial cells missing in the embryonic nervous system. Development 129, 3295-3309.
13 Freeman, M. R., Delrow, J., Kim, J., Johnson, E. and Doe, C. Q. (2003) Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron 38, 567-580.   DOI   ScienceOn
14 Altenhein, B., Becker, A., Busold, C., Beckmann, B., Hoheisel, J. D. and Technau, G. M. (2006) Expression profiling of glial genes during Drosophila embryogenesis. Dev. Biol. 296, 545-560.   DOI   ScienceOn
15 Saleh, M. C., Tassetto, M., van Rij, R. P., Goic, B., Gausson, V., Berry, B., Jacquier, C., Antoniewski, C. and Andino, R. (2009) Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 458, 346-350.   DOI   ScienceOn
16 Kettenmann, H. and Ransom, B. R. (2005) Neuroglia, 2nd ed., Oxford University Press, New York, USA.
17 Bainton, R. J., Tsai, L. T. Y., Schwabe, T., DeSalvo, M., Gaul, U. and Heberlein, U. (2005) moody encodes two GPCRs that regulate cocaine behaviors and blood-brain barrier permeability in Drosophila. Cell 123, 145-156.   DOI   ScienceOn
18 Barres, B. A. (2008) The mystery and magic of glia: A perspective on their roles in health and disease. Neuron 60, 430-440.   DOI   ScienceOn
19 Allen, N. J. and Barres, B. A. (2009) Glia-more than just brain glue. Nature 457, 675-677.   DOI   ScienceOn
20 Kim, M., Li, Y.-X., Dewapriya, P., Ryu, B. and Kim, S.-K. (2013) Floridoside suppresses pro-inflammatory responses by blocking MAPK signaling in activated microglia. BMB Rep. 46, 398-403.   과학기술학회마을   DOI   ScienceOn
21 Kim, J. Y., Lee, E. Y., Sohn, H. J., Kim, S. W., Kim, C. H., Ahn, H. Y., Kim, D. W., Cho, S. S. and Seo, J. H. (2013) Differential expression of ${\alpha}B$-crystallin causes maturation-dependent susceptibility oligodendrocytes to oxidative stress. BMB Rep. 46, 501-506.   과학기술학회마을   DOI   ScienceOn