Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.5.166

Asn124 of Cel5A from Hypocrea jecorina not only provides the N-glycosylation site but is also essential in maintaining enzymatic activity  

Qin, Yuqi (National Glycoengineering Research Center, and State Key Laboratory of Microbial Technology, Shandong University)
Qu, Yinbo (National Glycoengineering Research Center, and State Key Laboratory of Microbial Technology, Shandong University)
Publication Information
BMB Reports / v.47, no.5, 2014 , pp. 256-261 More about this Journal
Abstract
To investigate the function of N-glycosylation of Cel5A (endoglucanase II) from Hypocrea jecorina, two N-glycosylation site deletion Cel5A mutants (rN124D and rN124H) were expressed in Saccharomyces cerevisiae. The weights of these recombinant mutants were 54 kDa, which were lower than that of rCel5A. This result was expected to be attributed to deglycosylation. The enzyme activity of rN124H was greatly reduced to 60.6% compared with rCel5A, whereas rN124D showed slightly lower activity (10%) than that of rCel5A. rN124D and rN124H showed different thermal stabilities compared with the glycosylated rCel5A, especially at lower pH value. Thermal stabilities were reduced and improved for rN124D and rN124H, respectively. Circular dichroism spectroscopy showed that the modification of secondary structure by mutation may be the reason for the change in enzymatic activity and thermal stability.
Keywords
Cel5A; Circular dichroism spectroscopy; Deglycosylation; Hypocrea jecorina; Saccharomyces cerevisiae;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhao, X. H., Wang, W , Wang, F. Q. and Wei, D. Z. (2012) A comparative study of $\beta$-1, 4-endoglucanase (possessing b-1, 4-exoglucanase activity) from Bacillus subtilis LH expressed in Pichia pastoris GS115 and Escherichia coli Rosetta (DE3) Bioresour. Technol. 110, 539-545
2 Jeoh, T., Michener, W., Himmel, M. E., Decker, S. R. and Adney, W. S. (2008) Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnol Biofuels 1, 10.   DOI   ScienceOn
3 Voutilainen, S. P., Murray, P. G., Tuohy, M. G. and Koivula, A. (2010) Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Eng. Des. Sel. 23, 69-79.   DOI   ScienceOn
4 Suominen, P. L., Mantyla, A. L., Karhunen, T., Hakola, S. and Nevalainen, H. (1993) High frequency one-step gene replacement in Trichoderma reesei. II. Effects of deletions of individual cellulase genes. Mol. Gen. Genet. 241, 523-30.
5 Jun, H., Kieselbach, T. and Jonsson, L. J. (2011) Enzyme production by filamentous fungi: analysis of the secretome of Trichoderma reesei grown on unconventional carbon source. Microb. Cell. Fact. 10, 68.   DOI
6 Medve, J., Karlsson, J., Lee, D. and Tjerneld, F. (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol. Bioeng. 59, 621-634.   DOI
7 Herpoel-Gimbert, I., Margeot, A., Dolla, A., Jan, G., Molle, D., Lignon, S., Mathis, H., Sigoillot, J. C, Monot, F. and Asther, M. (2008) Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels 1, 18.   DOI   ScienceOn
8 Hu, J. P., Lanthier, P, White, T. C., McHugh, S. G., Yaguchi, M., Roy, R. and Thibault, P. (2001) Characterization of cellobiohydrolase I (Cel7A) glycoforms from extracts of Trichoderma reesei using capillary isoelectric focusing and electrospray mass spectrometry. J. Chromatogr. B Biomed. Sci. 752, 349-368.   DOI   ScienceOn
9 Stals, I., Sandra, K., Geysens, S., Contreras, R., Van Beeumen, J. and Claeyssens, M. (2004) Factors influencing glycosylation of Trichoderma reesei cellulases. I: Postsecretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology. 14, 713-724.   DOI   ScienceOn
10 Qin, Y., Wei, X., Liu, X., Wang, T. and Qu, Y. (2008) Purification and characterization of recombinant endoglucanase of Trichoderma reesei expressed in Saccharomyces cerevisiae with higher glycosylation and stability. Protein Expr. Purif. 58, 162-167.   DOI   ScienceOn
11 Tarentino, A. L, Plummer, T. H. Jr. and Maley, F. (1974) The release of intact oligosaccharides from specific glycoproteins by endo-beta-N-acetylglucosaminidase H. J. Biol. Chem. 249, 818-824.
12 Lo-Leggio, L. and Larsen, S. (2002) The 1. 62 A structure of Thermoascus aurantiacus endoglucanase: completing the structural picture of subfamilies in glycoside hydrolase family 5. FEBS Lett. 523, 103-108.   DOI   ScienceOn
13 Greenfield, N. and Fasman, G. D. (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 8, 4108-4116.   DOI   ScienceOn
14 Holzwarth, G. and Doty, P. (1965) The ultraviolet circular dichroism of polypeptides. J. Am. Chem. Soc. 87, 218-228   DOI
15 Helenius, A, Trombetta, E. S., Herbert, D. N. and Simons, J. F. (1997) Calnexin, calreticulin and the folding of glycoproteins. Trends. Cell Biol. 7, 193-200.   DOI   ScienceOn
16 Macarron, R., van Beeumen, J., Henrissat, B., de la Mata, I. and Claeyssens, M. (1993) Identification of an essential glutamate residue in the active site of endoglucanase III from Trichoderma reesei. FEBS Lett. 316, 137-140.   DOI   ScienceOn
17 Mansell, T. J., Guarino, C. and Delisa, M. P. (2013) Engineered genetic selection links in vivo protein folding and stability with asparagine-linked glycosylation. Biotechnol. J. doi: 10. 1002/biot. 201300026.   DOI   ScienceOn
18 Kaushik, S., Mohanty, D. and Surolia, A. (2012) Molecular dynamics simulations on pars intercerebralis major peptide-C (PMP-C) reveal the role of glycosylation and disulfide bonds in its enhanced structural stability and function. J. Biomol. Struct. Dyn. 29, 905-920.   DOI   ScienceOn
19 Schwede, T., Kopp, J., Guex, N. and Peitsch, M. C. (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381-3385.   DOI   ScienceOn
20 Qin, Y., Wei, X., Song, X. and Qu, Y. (2008) Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. J. Biotechnol. 135, 190-195.   DOI   ScienceOn
21 Benoit, I., Asther, M., Sulzenbacher, G., Record, E., Marmuse, L., Parsiegla, G., Gimbert, I., Asther, M and Bignon, C. (2006) Respective importance of protein folding and glycosylation in the thermal stability of recombinant feruloyl esterase A. FEBS Lett. 580, 5815-5821.   DOI   ScienceOn
22 Tull, D., Gottschalk, T. E., Svendsen, I., Kramhøft, B., Phillipson, B. A, Bisgard-Frantzen, H., Olsen, O. and Svensson, B. (2001) Extensive N-glycosylation reduces the thermal stability of a recombinant alkalophilic bacillus alpha-amylase produced in Pichia pastoris. Protein Expr. Purif. 21, 13-23.   DOI   ScienceOn
23 Shiraki, K. and Sakiyama, F. (2002) Histidine 210 mutant of a trypsin-type Achromobacter protease I shows broad optimum pH range. J. Biosci. Bioeng. 93, 331-333.   DOI   ScienceOn
24 Price, J. L., Powers, D. L., Powers, E. T. and Kelly, J. W. (2011) Glycosylation of the enhanced aromatic sequon is similarly stabilizing in three distinct reverse turn contexts. Proc. Natl. Acad. Sci. U. S. A. 108, 14127-14132.   DOI   ScienceOn
25 Shental-Bechor, D. and Levy, Y. (2008) Effect of glycosylation on protein folding: A close look at thermodynamic stabilization. Proc. Natl. Acad. Sci. U. S. A. 105, 8256-8261.   DOI   ScienceOn
26 Chen, R., Zhou, Z., Cao, Y., Bai, Y. and Yao, B. (2010) High yield expression of an AHL-lactonase from Bacillus sp. B546 in Pichia pastoris and its application to reduce Aeromonas hydrophila mortality in aquaculture. Microb. Cell. Fact. 9, 39.   DOI   ScienceOn
27 Schwarz, A., Brecker, L. and Nidetzky, B. (2007) Probing the active site of Corynebacterium callunae starch phosphorylase through the characterization of wild-type and His334-->Gly mutant enzymes. FEBS J. 274, 5105-5115.   DOI   ScienceOn
28 Fang, T. Y. and Ford, C. (1998) Protein engineering of Aspergillus awamori glucoamylase to increase its pH optimum. Protein Eng. 11, 383-388.   DOI
29 Higuchi, R., Krummel, B. and Saiki, R. K. (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16, 7351-7367.   DOI   ScienceOn
30 Gietz, R. D. and Woods, R. A. (2006) Yeast transformation by the LiAc/SS Carrier DNA/PEG method. Methods Mol. Biol. 313, 107-120.
31 Lynd, L. R., Weimer, P. J., van Zyl, W. H. and Pretorius, I. S. (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506-577.   DOI   ScienceOn
32 Lowry, O. H., Rosebrough, N. J., Farr A. L. and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
33 Medve, J., Lee, D. and Tjerneld, F. (1998). Ion-exchange chromatographic purification and quantitative analysis of Trichoderma reesei cellulase cellobiohydrolase I, II and endoglucanase by fast protein liquid chromatography. J. Chromatogr. A. 808, 153-156.   DOI   ScienceOn
34 Meinke, A., Damude, H. G., Tomme, P., Kwan, E., Kilburn, D. G., Miller, R. C. Jr, Warren, R. A. and Gilkes, N. R. (1995) Enhancement of the endo-beta-1,4-glucanase activity of an exocellobiohydrolase by deletion of a surface loop. J. Biol. Chem. 270, 4383-4386.   DOI   ScienceOn
35 Hui, J. P. M., White, T. C. and Thibault, P. (2002) Identification of glycan structure and glycosylation sites in cellobiohydrolase II and endoglucanases I and II from Trichoderma reesei. Glycobiology. 12, 837-849.   DOI   ScienceOn
36 Kubicek, C. P. (2013) Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J. Biotechnol. 163, 133-142.   DOI   ScienceOn
37 Beguin, P. and Aubert, J. P. (1994) The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25-58.   DOI   ScienceOn
38 Beckham, G. T., Dai, Z., Matthews, J. F., Momany, M., Payne, C. M., Adney, W. S., Baker, S. E. and Himmel, M. E. (2012) Harnessing glycosylation to improve cellulase activity. Curr. Opin. Biotechnol. 23, 338-345.   DOI   ScienceOn
39 Zhou, F., Olman, V. and Xu, Y. (2009) Large-scale analyses of glycosylation in cellulases. Genomics Proteomics Bioinformatics. 7, 194-199.   DOI   ScienceOn
40 Xia, D., Wei, Y., Zhang, G., Zhao, Q., Zhang, Y., Xiang, Z. and Lu, C. (2013) cDNA cloning, expression, and enzymatic activity of a novel endogenous cellulase from the beetle Batocera horsfieldi. Gene 514, 62-68.   DOI   ScienceOn
41 Garg, N., Bieler, N., Kenzom, T., Chhabra, M., Ansorge-Schumacher, M. and Mishra, S. (2012) Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase. BMC Biotechnol. 12, 75.   DOI
42 Gao, L., Gao, F., Wang, L., Geng, C., Chi, L., Zhao, J. and Qu, Y. (2012) N-glycoform diversity of cellobiohydrolase I from Penicillium decumbens and synergism of nonhydrolytic glycoform in cellulose degradation. J. Biol. Chem. 287, 15906-15915.   DOI
43 Beckham, G. T., Bomble, Y. J., Matthews, J. F, Taylor, C. B., Resch, M. G., Yarbrough, J. M., Decker, S. R., Bu, L., Zhao, X., McCabe, C., Wohlert, J., Bergenstrahle, M., Brady, J. W., Adney, W. S., Himmel, M. E. and Crowley, M. F. (2010) The O-glycosylated linker from the Trichoderma reesei Family 7 cellulase is a flexible, disordered protein. Biophys. J. 99, 3773-3781.   DOI   ScienceOn
44 Macarron, R., Acebal, C., Castillon, M. P., Dominguez, J. M., de la Mata, I., Pettersson, G., Tomme, P. and Claeyssens, M. (1993) Mode of action of endoglucanase III from Trichoderma reesei. Biochem. J. 289, 867-873.   DOI