Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.2.015

Store-operated Ca2+ entry in muscle physiology and diseases  

Pan, Zui (Department of Internal Medicine-Cardiovascular Medicine, The Ohio State University Wexner Medical Center)
Brotto, Marco (Muscle Biology Research Group-MUBIG, Schools of Nursing & Medicine, University of Missouri-Kansas City)
Ma, Jianjie (Department of Surgery, The Ohio State University Wexner Medical Center)
Publication Information
BMB Reports / v.47, no.2, 2014 , pp. 69-79 More about this Journal
Abstract
$Ca^{2+}$ release from intracellular stores and influx from extracellular reservoir regulate a wide range of physiological functions including muscle contraction and rhythmic heartbeat. One of the most ubiquitous pathways involved in controlled $Ca^{2+}$ influx into cells is store-operated $Ca^{2+}$ entry (SOCE), which is activated by the reduction of $Ca^{2+}$ concentration in the lumen of endoplasmic or sarcoplasmic reticulum (ER/SR). Although SOCE is pronounced in non-excitable cells, accumulating evidences highlight its presence and important roles in skeletal muscle and heart. Recent discovery of STIM proteins as ER/SR $Ca^{2+}$ sensors and Orai proteins as $Ca^{2+}$ channel pore forming unit expedited the mechanistic understanding of this pathway. This review focuses on current advances of SOCE components, regulation and physiologic and pathophysiologic roles in muscles. The specific property and the dysfunction of this pathway in muscle diseases, and new directions for future research in this rapidly growing field are discussed.
Keywords
Aging; Junctophilin; Mitsugumin29; Muscular dystrophy; Muscle fatigue; Orai1; Sarcopenia; STIM1;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Woo, J. S., Cho, C. H., Kim do, H. and Lee, E. H. (2010). TRPC3 cation channel plays an important role in proliferation and differentiation of skeletal muscle myoblasts. Exp. Mol. Med. 42, 614-627.   과학기술학회마을   DOI   ScienceOn
2 Woo, J. S., Hwang, J. H., Ko, J. K., Weisleder, N., Kim do, H., Ma, J. and Lee, E. H. (2010). S165F mutation of junctophilin 2 affects Ca2+ signalling in skeletal muscle. Biochem. J. 427, 125-134.   DOI   ScienceOn
3 Woo, J. S., Hwang, J. H., Ko, J. K., Kim do, H., Ma, J. and Lee, E. H. (2009). Glutamate at position 227 of junctophilin-2 is involved in binding to TRPC3. Mol. Cell Biochem. 328, 25-32.   DOI   ScienceOn
4 Yarotskyy, V., Protasi, F. and Dirksen, R. T. (2013). Accelerated activation of SOCE current in myotubes from two mouse models of anesthetic- and heat-induced sudden death. PLoS One 8, e77633.   DOI
5 Allen, D. G., Lamb, G. D. and Westerblad, H. (2008). Skeletal muscle fatigue: cellular mechanisms. Physiol. Rev. 88, 287-332.   DOI   ScienceOn
6 Zhao, X., Yoshida, M., Brotto, L., Takeshima, H., Weisleder, N., Hirata, Y., Nosek, T. M., Ma, J. and Brotto, M. (2005). Enhanced resistance to fatigue and altered calcium handling properties of sarcalumenin knockout mice. Physiol. Genomics. 23, 72-78.   DOI   ScienceOn
7 Thornton, A. M., Zhao, X., Weisleder, N., Brotto, L. S., Bougoin, S., Nosek, T. M., Reid, M., Hardin, B., Pan, Z., Ma, J., Parness, J. and Brotto, M. (2011). Store-operated Ca (2+) entry (SOCE) contributes to normal skeletal muscle contractility in young but not in aged skeletal muscle. Aging (Albany NY) 3, 621-634.
8 Kiviluoto, S., Decuypere, J. P., De Smedt, H., Missiaen, L., Parys, J. B. and Bultynck, G. (2011). STIM1 as a key regulator for Ca2+ homeostasis in skeletal-muscle development and function. Skelet Muscle 1, 16.   DOI
9 Darbellay, B., Arnaudeau, S., Konig, S., Jousset, H., Bader, C., Demaurex, N. and Bernheim, L. (2009). STIM1- and Orai1-dependent store-operated calcium entry regulates human myoblast differentiation. J. Biol. Chem. 284, 5370-5380.   DOI   ScienceOn
10 Li, T., Finch, E. A., Graham, V., Zhang, Z. S., Ding, J. D., Burch, J., Oh-hora, M. and Rosenberg, P. (2012). STIM1-Ca (2+) signaling is required for the hypertrophic growth of skeletal muscle in mice. Mol. Cell Biol. 32, 3009-3017.   DOI
11 Zahn, J. M., Sonu, R., Vogel, H., Crane, E., Mazan-Mamczarz, K., Rabkin, R., Davis, R. W., Becker, K. G., Owen, A. B. and Kim, S. K. (2006). Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet. 2, e115.   DOI   ScienceOn
12 Vanterpool, C. K., Pearce, W. J. and Buchholz, J. N. (2005). Advancing age alters rapid and spontaneous refilling of caffeine-sensitive calcium stores in sympathetic superior cervical ganglion cells. J. Appl. Physiol. 99, 963-971.   DOI   ScienceOn
13 Bohm, J., Chevessier, F., Maues De Paula, A., Koch, C., Attarian, S., Feger, C., Hantai, D., Laforet, P., Ghorab, K., Vallat, J. M., Fardeau, M., Figarella-Branger, D., Pouget, J., Romero, N. B., Koch, M., Ebel, C., Levy, N., Krahn, M., Eymard, B., Bartoli, M. and Laporte, J. (2013). Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am. J. Hum. Genet. 92, 271-278.   DOI   ScienceOn
14 Parness, J., Bandschapp, O. and Girard, T. (2009). The myotonias and susceptibility to malignant hyperthermia. Anesth. Analg. 109, 1054-1064.   DOI   ScienceOn
15 Romero-Suarez, S., Shen, J., Brotto, L., Hall, T., Mo, C., Valdivia, H. H., Andresen, J., Wacker, M., Nosek, T. M., Qu, C. K. and Brotto, M. (2010) Muscle-specific inositide phosphatase (MIP/MTMR14) is reduced with age and its loss accelerates skeletal muscle aging process by altering calcium homeostasis. Aging (Albany NY) 2, 504-513.
16 Duke, A. M., Hopkins, P. M., Calaghan, S. C., Halsall, J. P. and Steele, D. S. (2010). Store-operated Ca2+ entry in malignant hyperthermia-susceptible human skeletal muscle. J. Biol. Chem. 285, 25645-25653.   DOI   ScienceOn
17 Romanick, M., Thompson, L. V. and Brown-Borg, H. M. (2013) Murine models of atrophy, cachexia and sarcopenia in skeletal muscle. Biochim. Biophys. Acta. 1832, 1410-1420.   DOI   ScienceOn
18 Lowe, D. A., Thomas, D. D. and Thompson, L. V. (2002). Force generation, but not myosin ATPase activity, declines with age in rat muscle fibers. Am. J. Physiol. Cell Physiol. 283, C187-192.   DOI   ScienceOn
19 Russ, D. W., Gregg-Cornell, K., Conaway, M. J. and Clark, B. C. (2012). Evolving concepts on the age-related changes in "muscle quality". J. Cachexia. Sarcopenia. Muscle. 3, 95-109.   DOI   ScienceOn
20 Manini, T. M. and Clark, B. C. (2012). Dynapenia and aging: an update. J. Gerontol. A Biol. Sci. Med. Sci. 67, 28-40.
21 Collins, H. E., Zhu-Mauldin, X., Marchase, R. B. and Chatham, J. C. (2013). STIM1/Orai1-mediated SOCE: current perspectives and potential roles in cardiac function and pathology. Am. J. Physiol. Heart. Circ. Physiol. 305, H446-458.   DOI   ScienceOn
22 Ohba, T., Watanabe, H., Murakami, M., Sato, T., Ono, K. and Ito, H. (2009) Essential role of STIM1 in the development of cardiomyocyte hypertrophy. Biochem. Biophys. Res. Commun. 389, 172-176.   DOI   ScienceOn
23 Yeromin, A. V., Zhang, S. L., Jiang, W., Yu, Y., Safrina, O. and Cahalan, M. D. (2006). Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443, 226-229.   DOI   ScienceOn
24 Touchberry, C. D., Elmore, C. J., Nguyen, T. M., Andresen, J. J., Zhao, X., Orange, M., Weisleder, N., Brotto, M., Claycomb, W. C. and Wacker, M. J. (2011). Store-operated calcium entry is present in HL-1 cardiomyocytes and contributes to resting calcium. Biochem. Biophys. Res. Commun. 416, 45-50.   DOI
25 Luo, X., Hojayev, B., Jiang, N., Wang, Z. V., Tandan, S., Rakalin, A., Rothermel, B. A., Gillette, T. G. and Hill, J. A. (2012). STIM1-dependent store-operated Ca (2) (+) entry is required for pathological cardiac hypertrophy. J. Mol. Cell Cardiol. 52, 136-147.   DOI   ScienceOn
26 Voelkers, M., Salz, M., Herzog, N., Frank, D., Dolatabadi, N., Frey, N., Gude, N., Friedrich, O., Koch, W. J., Katus, H. A., Sussman, M. A. and Most, P. (2010). Orai1 and Stim1 regulate normal and hypertrophic growth in cardiomyocytes. J. Mol. Cell Cardiol. 48, 1329-1334.   DOI   ScienceOn
27 Prakriya, M., Feske, S., Gwack, Y., Srikanth, S., Rao, A. and Hogan, P. G. (2006). Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230-233.   DOI   ScienceOn
28 Putney, J. W. Jr. (1986). A model for receptor-regulated calcium entry. Cell Calcium. 7, 1-12.   DOI   ScienceOn
29 Zhang, S. L., Yu, Y., Roos, J., Kozak, J. A., Deerinck, T. J., Ellisman, M. H., Stauderman, K. A. and Cahalan, M. D. (2005). STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902-905.   DOI   ScienceOn
30 Liou, J., Kim, M. L., Heo, W. D., Jones, J. T., Myers, J. W., Ferrell, J. E. Jr. and Meyer, T. (2005). STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235-1241.   DOI   ScienceOn
31 Vig, M., Peinelt, C., Beck, A., Koomoa, D. L., Rabah, D., Koblan-Huberson, M., Kraft, S., Turner, H., Fleig, A., Penner, R. and Kinet, J. P. (2006). CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312, 1220-1223.   DOI   ScienceOn
32 Feske, S., Gwack, Y., Prakriya, M., Srikanth, S., Puppel, S. H., Tanasa, B., Hogan, P. G., Lewis, R. S., Daly, M. and Rao, A. (2006). A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179-185.   DOI   ScienceOn
33 Luik, R. M., Wu, M. M., Buchanan, J. and Lewis, R. S. (2006). The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J. Cell Biol. 174, 815-825.   DOI   ScienceOn
34 Huang, G. N., Zeng, W., Kim, J. Y., Yuan, J. P., Han, L., Muallem, S. and Worley, P. F. (2006). STIM1 carboxyl-terminus activates native SOC, I (crac) and TRPC1 channels. Nat. Cell Biol. 8, 1003-1010.   DOI   ScienceOn
35 Stiber, J., Hawkins, A., Zhang, Z. S., Wang, S., Burch, J., Graham, V., Ward, C. C., Seth, M., Finch, E., Malouf, N., Williams, R. S., Eu, J. P. and Rosenberg, P. (2008). STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat. Cell Biol. 10, 688-697.   DOI   ScienceOn
36 Rios, E., Pizarro, G. and Stefani, E. (1992). Charge movement and the nature of signal transduction in skeletal muscle excitation-contraction coupling. Annu. Rev. Physiol. 54, 109-133.   DOI   ScienceOn
37 McCarl, C. A., Picard, C., Khalil, S., Kawasaki, T., Rother, J., Papolos, A., Kutok, J., Hivroz, C., Ledeist, F., Plogmann, K., Ehl, S., Notheis, G., Albert, M. H., Belohradsky, B. H., Kirschner, J., Rao, A., Fischer, A. and Feske, S. (2009). ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J. Allergy Clin. Immunol. 124, 1311-1318 e1317.   DOI   ScienceOn
38 Pan, Z., Yang, D., Nagaraj, R. Y., Nosek, T. A., Nishi, M., Takeshima, H., Cheng, H. and Ma, J. (2002). Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nat. Cell Biol. 4, 379-383.   DOI   ScienceOn
39 Lewis, R. S. (2011). Store-operated calcium channels: new perspectives on mechanism and function. Cold Spring Harb. Perspect. Biol. 3 a003970.
40 Putney, J. W. (2011). The physiological function of storeoperated calcium entry. Neurochem. Res. 36, 1157-1165.   DOI   ScienceOn
41 Feske, S. (2009). ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol. Rev. 231, 189-209.   DOI   ScienceOn
42 Ma, J. and Pan, Z. (2003). Retrograde activation of storeoperated calcium channel. Cell Calcium. 33, 375-384.   DOI   ScienceOn
43 Rios, E., Ma, J. J. and Gonzalez, A. (1991). The mechanical hypothesis of excitation-contraction (EC) coupling in skeletal muscle. J. Muscle. Res. Cell Motil. 12, 127-135.   DOI
44 Feske, S. (2010). CRAC channelopathies. Pflugers. Arch. 460, 417-435.   DOI
45 Feske, S. (2011). Immunodeficiency due to defects in store-operated calcium entry. Ann. N. Y. Acad. Sci. 1238, 74-90.   DOI   ScienceOn
46 Cota, G. and Stefani, E. (1989). Voltage-dependent inactivation of slow calcium channels in intact twitch muscle fibers of the frog. J. Gen. Physiol. 94, 937-951.   DOI   ScienceOn
47 Nakai, J., Dirksen, R. T., Nguyen, H. T., Pessah, I. N., Beam, K. G. and Allen, P. D. (1996). Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 380, 72-75.   DOI   ScienceOn
48 MacLennan, D. H. (2000). Ca2+ signalling and muscle disease. Eur. J. Biochem. 267, 5291-5297.   DOI   ScienceOn
49 Hovnanian, A. (2007). SERCA pumps and human diseases. Subcell. Biochem. 45, 337-363.   DOI
50 MacLennan, D. H., Rice, W. J., Odermatt, A. and Green, N. M. (1998). Structure-function relationships in the Ca (2+)-binding and translocation domain of SERCA1: physiological correlates in Brody disease. Acta. Physiol. Scand. 643(Suppl), 55-67.
51 Periasamy, M. and Kalyanasundaram, A. (2007). SERCA pump isoforms: their role in calcium transport and disease. Muscle. Nerve. 35, 430-442.   DOI   ScienceOn
52 Zhao, X., Weisleder, N., Han, X., Pan, Z., Parness, J., Brotto, M. and Ma, J. (2006). Azumolene inhibits a component of store-operated calcium entry coupled to the skeletal muscle ryanodine receptor. J. Biol. Chem. 281, 33477-33486.   DOI
53 Bannister, R. A., Pessah, I. N. and Beam, K. G. (2009). The skeletal L-type Ca (2+) current is a major contributor to excitation-coupled Ca (2+) entry. J. Gen. Physiol. 133, 79-91.   DOI   ScienceOn
54 Brotto, M. (2011). Aging, sarcopenia and store-operated calcium entry: a common link? Cell Cycle 10, 4201-4202.   DOI
55 Cherednichenko, G., Hurne, A. M., Fessenden, J. D., Lee, E. H., Allen, P. D., Beam, K. G. and Pessah, I. N. (2004). Conformational activation of Ca2+ entry by depolarization of skeletal myotubes. Proc. Natl. Acad. Sci. U. S. A. 101, 15793-15798.   DOI   ScienceOn
56 Dirksen, R. T. (2009). Checking your SOCCs and feet: the molecular mechanisms of Ca2+ entry in skeletal muscle. J. Physiol. 587, 3139-3147.   DOI   ScienceOn
57 Yarotskyy, V. and Dirksen, R. T. (2012). Temperature and RyR1 regulate the activation rate of store-operated Ca (2)+ entry current in myotubes. Biophys J. 103, 202-211.   DOI   ScienceOn
58 Pan, Z., Zhao, X. and Brotto, M. (2012). Fluorescencebased measurement of store-operated calcium entry in live cells: from cultured cancer cell to skeletal muscle fiber. J. Vis. Exp. pii: 3415, doi: 10.3791/3415.   DOI
59 Hou, X., Pedi, L., Diver, M. M. and Long, S. B. (2012). Crystal structure of the calcium release-activated calcium channel Orai. Science 338, 1308-1313.   DOI
60 Launikonis, B. S., Barnes, M. and Stephenson, D. G. (2003). Identification of the coupling between skeletal muscle store-operated Ca2+ entry and the inositol trisphosphate receptor. Proc. Natl. Acad. Sci. U S. A. 100, 2941-2944.   DOI   ScienceOn
61 Zhao, X., Moloughney, J. G., Zhang, S., Komazaki, S. and Weisleder, N. (2012). Orai1 mediates exacerbated Ca (2+) entry in dystrophic skeletal muscle. PLoS One 7, e49862.   DOI
62 Launikonis, B. S. and Rios, E. (2007). Store-operated Ca2+ entry during intracellular Ca2+ release in mammalian skeletal muscle. J. Physiol. 583, 81-97.   DOI   ScienceOn
63 Louis, M., Zanou, N., Van Schoor, M. and Gailly, P. (2008). TRPC1 regulates skeletal myoblast migration and differentiation. J. Cell Sci. 121, 3951-3959.   DOI   ScienceOn
64 Brinkmeier, H. (2011). TRP channels in skeletal muscle: gene expression, function and implications for disease. Adv. Exp. Med. Biol. 704, 749-758.   DOI   ScienceOn
65 Zhao, X., Weisleder, N., Thornton, A., Oppong, Y., Campbell, R., Ma, J. and Brotto, M. (2008). Compromised store-operated Ca2+ entry in aged skeletal muscle. Aging Cell 7, 561-568.   DOI   ScienceOn
66 Lyfenko, A. D. and Dirksen, R. T. (2008). Differential dependence of store-operated and excitation-coupled Ca2+ entry in skeletal muscle on STIM1 and Orai1. J. Physiol. 586, 4815-4824.   DOI   ScienceOn
67 Wei-Lapierre, L., Carrell, E. M., Boncompagni, S., Protasi, F. and Dirksen, R. T. (2013). Orai1-dependent calcium entry promotes skeletal muscle growth and limits fatigue. Nat. Commun. 4, 2805.
68 Flucher, B. E., Takekura, H. and Franzini-Armstrong, C. (1993). Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils. Dev. Biol. 160, 135-147.   DOI   ScienceOn
69 Mo, C., Romero-Suarez, S., Bonewald, L., Johnson, M. and Brotto, M. (2012). Prostaglandin E2: from clinical applications to its potential role in bone- muscle crosstalk and myogenic differentiation. Recent. Pat. Biotechnol. 6, 223-229.   DOI
70 Ma, J. and Pan, Z. (2003). Junctional membrane structure and store operated calcium entry in muscle cells. Front. Biosci. 8, d242-255.   DOI
71 Darbellay, B., Arnaudeau, S., Bader, C. R., Konig, S. and Bernheim, L. (2011). STIM1L is a new actin-binding splice variant involved in fast repetitive Ca2+ release. J. Cell Biol. 194, 335-346.   DOI   ScienceOn
72 Jahn, K., Lara-Castillo, N., Brotto, L., Mo, C. L., Johnson, M. L., Brotto, M. and Bonewald, L. F. (2012). Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of beta-catenin. Eur. Cell Mater. 24, 197-209.   DOI
73 Takeshima, H., Shimuta, M., Komazaki, S., Ohmi, K., Nishi, M., Iino, M., Miyata, A. and Kangawa, K. (1998). Mitsugumin29, a novel synaptophysin family member from the triad junction in skeletal muscle. Biochem. J. 331(Pt 1), 317-322.   DOI
74 Zhao, X., Yamazaki, D., Kakizawa, S., Pan, Z., Takeshima, H. and Ma, J. (2011). Molecular architecture of Ca2+ signaling control in muscle and heart cells. Channels (Austin) 5, 391-396.   DOI
75 Weisleder, N., Takeshima, H. and Ma, J. (2008). Immunoproteomic approach to excitation--contraction coupling in skeletal and cardiac muscle: molecular insights revealed by the mitsugumins. Cell Calcium. 43, 1-8.   DOI   ScienceOn
76 Komazaki, S., Nishi, M., Takeshima, H. and Nakamura, H. (2001). Abnormal formation of sarcoplasmic reticulum networks and triads during early development of skeletal muscle cells in mitsugumin29-deficient mice. Dev. Growth Differ. 43, 717-723.   DOI   ScienceOn
77 Nishi, M., Komazaki, S., Kurebayashi, N., Ogawa, Y., Noda, T., Iino, M. and Takeshima, H. (1999). Abnormal features in skeletal muscle from mice lacking mitsugumin29. J. Cell Biol. 147, 1473-1480.   DOI
78 Takeshima, H., Komazaki, S., Nishi, M., Iino, M. and Kangawa, K. (2000). Junctophilins: a novel family of junctional membrane complex proteins. Mol. Cell 6, 11-22.
79 Nishi, M., Sakagami, H., Komazaki, S., Kondo, H. and Takeshima, H. (2003). Coexpression of junctophilin type 3 and type 4 in brain. Brain Res. Mol. Brain Res. 118, 102-110.   DOI
80 Ito, K., Komazaki, S., Sasamoto, K., Yoshida, M., Nishi, M., Kitamura, K. and Takeshima, H. (2001). Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1. J. Cell Biol. 154, 1059-1067.   DOI   ScienceOn
81 Komazaki, S., Nishi, M. and Takeshima, H. (2003). Abnormal junctional membrane structures in cardiac myocytes expressing ectopic junctophilin type 1. FEBS Lett. 542, 69-73.   DOI   ScienceOn
82 Shin, D. W., Pan, Z., Kim, E. K., Lee, J. M., Bhat, M. B., Parness, J., Kim, D. H. and Ma, J. (2003). A retrograde signal from calsequestrin for the regulation of store-operated Ca2+ entry in skeletal muscle. J. Biol. Chem. 278, 3286-3292.   DOI   ScienceOn
83 Hirata, Y., Brotto, M., Weisleder, N., Chu, Y., Lin, P., Zhao, X., Thornton, A., Komazaki, S., Takeshima, H., Ma, J. and Pan, Z. (2006). Uncoupling store-operated Ca2+ entry and altered Ca2+ release from sarcoplasmic reticulum through silencing of junctophilin genes. Biophys. J. 90, 4418-4427.   DOI   ScienceOn
84 Kurebayashi, N. and Ogawa, Y. (2001). Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry into mouse skeletal muscle fibres. J. Physiol. 533, 185-199.   DOI   ScienceOn
85 Picard, C., McCarl, C. A., Papolos, A., Khalil, S., Luthy, K., Hivroz, C., LeDeist, F., Rieux-Laucat, F., Rechavi, G., Rao, A., Fischer, A. and Feske, S. (2009). STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N. Engl. J. Med. 360, 1971-1980.   DOI   ScienceOn
86 Stiber, J. A. and Rosenberg, P. B. (2011). The role of store-operated calcium influx in skeletal muscle signaling. Cell Calcium. 49, 341-349.   DOI   ScienceOn
87 Roos, J., DiGregorio, P. J., Yeromin, A. V., Ohlsen, K., Lioudyno, M., Zhang, S., Safrina, O., Kozak, J. A., Wagner, S. L., Cahalan, M. D., Velicelebi, G. and Stauderman, K. A. (2005). STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435-445.   DOI   ScienceOn
88 Nishi, M., Mizushima, A., Nakagawara, K. and Takeshima, H. (2000). Characterization of human junctophilin subtype genes. Biochem. Biophys. Res. Commun. 273, 920-927.   DOI   ScienceOn
89 Pan, Z., Hirata, Y., Nagaraj, R. Y., Zhao, J., Nishi, M., Hayek, S. M., Bhat, M. B., Takeshima, H. and Ma, J. (2004). Co-expression of MG29 and ryanodine receptor leads to apoptotic cell death: effect mediated by intracellular Ca2+ release. J. Biol. Chem. 279, 19387-19390.   DOI   ScienceOn
90 Zhao, X., Min, C. K., Ko, J. K., Parness, J., Kim do, H., Weisleder, N. and Ma, J. (2010). Increased store-operated Ca2+ entry in skeletal muscle with reduced calsequestrin- 1 expression. Biophys. J. 99, 1556-1564.   DOI   ScienceOn
91 Lowe, D. A., Husom, A. D., Ferrington, D. A. and Thompson, L. V. (2004). Myofibrillar myosin ATPase activity in hindlimb muscles from young and aged rats. Mech. Ageing. Dev. 125, 619-627.   DOI   ScienceOn
92 Volkers, M., Dolatabadi, N., Gude, N., Most, P., Sussman, M. A. and Hassel, D. (2012). Orai1 deficiency leads to heart failure and skeletal myopathy in zebrafish. J. Cell Sci. 125, 287-294.   DOI