1 |
Woo, J. S., Cho, C. H., Kim do, H. and Lee, E. H. (2010). TRPC3 cation channel plays an important role in proliferation and differentiation of skeletal muscle myoblasts. Exp. Mol. Med. 42, 614-627.
과학기술학회마을
DOI
ScienceOn
|
2 |
Woo, J. S., Hwang, J. H., Ko, J. K., Weisleder, N., Kim do, H., Ma, J. and Lee, E. H. (2010). S165F mutation of junctophilin 2 affects Ca2+ signalling in skeletal muscle. Biochem. J. 427, 125-134.
DOI
ScienceOn
|
3 |
Woo, J. S., Hwang, J. H., Ko, J. K., Kim do, H., Ma, J. and Lee, E. H. (2009). Glutamate at position 227 of junctophilin-2 is involved in binding to TRPC3. Mol. Cell Biochem. 328, 25-32.
DOI
ScienceOn
|
4 |
Yarotskyy, V., Protasi, F. and Dirksen, R. T. (2013). Accelerated activation of SOCE current in myotubes from two mouse models of anesthetic- and heat-induced sudden death. PLoS One 8, e77633.
DOI
|
5 |
Allen, D. G., Lamb, G. D. and Westerblad, H. (2008). Skeletal muscle fatigue: cellular mechanisms. Physiol. Rev. 88, 287-332.
DOI
ScienceOn
|
6 |
Zhao, X., Yoshida, M., Brotto, L., Takeshima, H., Weisleder, N., Hirata, Y., Nosek, T. M., Ma, J. and Brotto, M. (2005). Enhanced resistance to fatigue and altered calcium handling properties of sarcalumenin knockout mice. Physiol. Genomics. 23, 72-78.
DOI
ScienceOn
|
7 |
Thornton, A. M., Zhao, X., Weisleder, N., Brotto, L. S., Bougoin, S., Nosek, T. M., Reid, M., Hardin, B., Pan, Z., Ma, J., Parness, J. and Brotto, M. (2011). Store-operated Ca (2+) entry (SOCE) contributes to normal skeletal muscle contractility in young but not in aged skeletal muscle. Aging (Albany NY) 3, 621-634.
|
8 |
Kiviluoto, S., Decuypere, J. P., De Smedt, H., Missiaen, L., Parys, J. B. and Bultynck, G. (2011). STIM1 as a key regulator for Ca2+ homeostasis in skeletal-muscle development and function. Skelet Muscle 1, 16.
DOI
|
9 |
Darbellay, B., Arnaudeau, S., Konig, S., Jousset, H., Bader, C., Demaurex, N. and Bernheim, L. (2009). STIM1- and Orai1-dependent store-operated calcium entry regulates human myoblast differentiation. J. Biol. Chem. 284, 5370-5380.
DOI
ScienceOn
|
10 |
Li, T., Finch, E. A., Graham, V., Zhang, Z. S., Ding, J. D., Burch, J., Oh-hora, M. and Rosenberg, P. (2012). STIM1-Ca (2+) signaling is required for the hypertrophic growth of skeletal muscle in mice. Mol. Cell Biol. 32, 3009-3017.
DOI
|
11 |
Zahn, J. M., Sonu, R., Vogel, H., Crane, E., Mazan-Mamczarz, K., Rabkin, R., Davis, R. W., Becker, K. G., Owen, A. B. and Kim, S. K. (2006). Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet. 2, e115.
DOI
ScienceOn
|
12 |
Vanterpool, C. K., Pearce, W. J. and Buchholz, J. N. (2005). Advancing age alters rapid and spontaneous refilling of caffeine-sensitive calcium stores in sympathetic superior cervical ganglion cells. J. Appl. Physiol. 99, 963-971.
DOI
ScienceOn
|
13 |
Bohm, J., Chevessier, F., Maues De Paula, A., Koch, C., Attarian, S., Feger, C., Hantai, D., Laforet, P., Ghorab, K., Vallat, J. M., Fardeau, M., Figarella-Branger, D., Pouget, J., Romero, N. B., Koch, M., Ebel, C., Levy, N., Krahn, M., Eymard, B., Bartoli, M. and Laporte, J. (2013). Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am. J. Hum. Genet. 92, 271-278.
DOI
ScienceOn
|
14 |
Parness, J., Bandschapp, O. and Girard, T. (2009). The myotonias and susceptibility to malignant hyperthermia. Anesth. Analg. 109, 1054-1064.
DOI
ScienceOn
|
15 |
Romero-Suarez, S., Shen, J., Brotto, L., Hall, T., Mo, C., Valdivia, H. H., Andresen, J., Wacker, M., Nosek, T. M., Qu, C. K. and Brotto, M. (2010) Muscle-specific inositide phosphatase (MIP/MTMR14) is reduced with age and its loss accelerates skeletal muscle aging process by altering calcium homeostasis. Aging (Albany NY) 2, 504-513.
|
16 |
Duke, A. M., Hopkins, P. M., Calaghan, S. C., Halsall, J. P. and Steele, D. S. (2010). Store-operated Ca2+ entry in malignant hyperthermia-susceptible human skeletal muscle. J. Biol. Chem. 285, 25645-25653.
DOI
ScienceOn
|
17 |
Romanick, M., Thompson, L. V. and Brown-Borg, H. M. (2013) Murine models of atrophy, cachexia and sarcopenia in skeletal muscle. Biochim. Biophys. Acta. 1832, 1410-1420.
DOI
ScienceOn
|
18 |
Lowe, D. A., Thomas, D. D. and Thompson, L. V. (2002). Force generation, but not myosin ATPase activity, declines with age in rat muscle fibers. Am. J. Physiol. Cell Physiol. 283, C187-192.
DOI
ScienceOn
|
19 |
Russ, D. W., Gregg-Cornell, K., Conaway, M. J. and Clark, B. C. (2012). Evolving concepts on the age-related changes in "muscle quality". J. Cachexia. Sarcopenia. Muscle. 3, 95-109.
DOI
ScienceOn
|
20 |
Manini, T. M. and Clark, B. C. (2012). Dynapenia and aging: an update. J. Gerontol. A Biol. Sci. Med. Sci. 67, 28-40.
|
21 |
Collins, H. E., Zhu-Mauldin, X., Marchase, R. B. and Chatham, J. C. (2013). STIM1/Orai1-mediated SOCE: current perspectives and potential roles in cardiac function and pathology. Am. J. Physiol. Heart. Circ. Physiol. 305, H446-458.
DOI
ScienceOn
|
22 |
Ohba, T., Watanabe, H., Murakami, M., Sato, T., Ono, K. and Ito, H. (2009) Essential role of STIM1 in the development of cardiomyocyte hypertrophy. Biochem. Biophys. Res. Commun. 389, 172-176.
DOI
ScienceOn
|
23 |
Yeromin, A. V., Zhang, S. L., Jiang, W., Yu, Y., Safrina, O. and Cahalan, M. D. (2006). Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443, 226-229.
DOI
ScienceOn
|
24 |
Touchberry, C. D., Elmore, C. J., Nguyen, T. M., Andresen, J. J., Zhao, X., Orange, M., Weisleder, N., Brotto, M., Claycomb, W. C. and Wacker, M. J. (2011). Store-operated calcium entry is present in HL-1 cardiomyocytes and contributes to resting calcium. Biochem. Biophys. Res. Commun. 416, 45-50.
DOI
|
25 |
Luo, X., Hojayev, B., Jiang, N., Wang, Z. V., Tandan, S., Rakalin, A., Rothermel, B. A., Gillette, T. G. and Hill, J. A. (2012). STIM1-dependent store-operated Ca (2) (+) entry is required for pathological cardiac hypertrophy. J. Mol. Cell Cardiol. 52, 136-147.
DOI
ScienceOn
|
26 |
Voelkers, M., Salz, M., Herzog, N., Frank, D., Dolatabadi, N., Frey, N., Gude, N., Friedrich, O., Koch, W. J., Katus, H. A., Sussman, M. A. and Most, P. (2010). Orai1 and Stim1 regulate normal and hypertrophic growth in cardiomyocytes. J. Mol. Cell Cardiol. 48, 1329-1334.
DOI
ScienceOn
|
27 |
Prakriya, M., Feske, S., Gwack, Y., Srikanth, S., Rao, A. and Hogan, P. G. (2006). Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230-233.
DOI
ScienceOn
|
28 |
Putney, J. W. Jr. (1986). A model for receptor-regulated calcium entry. Cell Calcium. 7, 1-12.
DOI
ScienceOn
|
29 |
Zhang, S. L., Yu, Y., Roos, J., Kozak, J. A., Deerinck, T. J., Ellisman, M. H., Stauderman, K. A. and Cahalan, M. D. (2005). STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902-905.
DOI
ScienceOn
|
30 |
Liou, J., Kim, M. L., Heo, W. D., Jones, J. T., Myers, J. W., Ferrell, J. E. Jr. and Meyer, T. (2005). STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235-1241.
DOI
ScienceOn
|
31 |
Vig, M., Peinelt, C., Beck, A., Koomoa, D. L., Rabah, D., Koblan-Huberson, M., Kraft, S., Turner, H., Fleig, A., Penner, R. and Kinet, J. P. (2006). CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312, 1220-1223.
DOI
ScienceOn
|
32 |
Feske, S., Gwack, Y., Prakriya, M., Srikanth, S., Puppel, S. H., Tanasa, B., Hogan, P. G., Lewis, R. S., Daly, M. and Rao, A. (2006). A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179-185.
DOI
ScienceOn
|
33 |
Luik, R. M., Wu, M. M., Buchanan, J. and Lewis, R. S. (2006). The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J. Cell Biol. 174, 815-825.
DOI
ScienceOn
|
34 |
Huang, G. N., Zeng, W., Kim, J. Y., Yuan, J. P., Han, L., Muallem, S. and Worley, P. F. (2006). STIM1 carboxyl-terminus activates native SOC, I (crac) and TRPC1 channels. Nat. Cell Biol. 8, 1003-1010.
DOI
ScienceOn
|
35 |
Stiber, J., Hawkins, A., Zhang, Z. S., Wang, S., Burch, J., Graham, V., Ward, C. C., Seth, M., Finch, E., Malouf, N., Williams, R. S., Eu, J. P. and Rosenberg, P. (2008). STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat. Cell Biol. 10, 688-697.
DOI
ScienceOn
|
36 |
Rios, E., Pizarro, G. and Stefani, E. (1992). Charge movement and the nature of signal transduction in skeletal muscle excitation-contraction coupling. Annu. Rev. Physiol. 54, 109-133.
DOI
ScienceOn
|
37 |
McCarl, C. A., Picard, C., Khalil, S., Kawasaki, T., Rother, J., Papolos, A., Kutok, J., Hivroz, C., Ledeist, F., Plogmann, K., Ehl, S., Notheis, G., Albert, M. H., Belohradsky, B. H., Kirschner, J., Rao, A., Fischer, A. and Feske, S. (2009). ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J. Allergy Clin. Immunol. 124, 1311-1318 e1317.
DOI
ScienceOn
|
38 |
Pan, Z., Yang, D., Nagaraj, R. Y., Nosek, T. A., Nishi, M., Takeshima, H., Cheng, H. and Ma, J. (2002). Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nat. Cell Biol. 4, 379-383.
DOI
ScienceOn
|
39 |
Lewis, R. S. (2011). Store-operated calcium channels: new perspectives on mechanism and function. Cold Spring Harb. Perspect. Biol. 3 a003970.
|
40 |
Putney, J. W. (2011). The physiological function of storeoperated calcium entry. Neurochem. Res. 36, 1157-1165.
DOI
ScienceOn
|
41 |
Feske, S. (2009). ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol. Rev. 231, 189-209.
DOI
ScienceOn
|
42 |
Ma, J. and Pan, Z. (2003). Retrograde activation of storeoperated calcium channel. Cell Calcium. 33, 375-384.
DOI
ScienceOn
|
43 |
Rios, E., Ma, J. J. and Gonzalez, A. (1991). The mechanical hypothesis of excitation-contraction (EC) coupling in skeletal muscle. J. Muscle. Res. Cell Motil. 12, 127-135.
DOI
|
44 |
Feske, S. (2010). CRAC channelopathies. Pflugers. Arch. 460, 417-435.
DOI
|
45 |
Feske, S. (2011). Immunodeficiency due to defects in store-operated calcium entry. Ann. N. Y. Acad. Sci. 1238, 74-90.
DOI
ScienceOn
|
46 |
Cota, G. and Stefani, E. (1989). Voltage-dependent inactivation of slow calcium channels in intact twitch muscle fibers of the frog. J. Gen. Physiol. 94, 937-951.
DOI
ScienceOn
|
47 |
Nakai, J., Dirksen, R. T., Nguyen, H. T., Pessah, I. N., Beam, K. G. and Allen, P. D. (1996). Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 380, 72-75.
DOI
ScienceOn
|
48 |
MacLennan, D. H. (2000). Ca2+ signalling and muscle disease. Eur. J. Biochem. 267, 5291-5297.
DOI
ScienceOn
|
49 |
Hovnanian, A. (2007). SERCA pumps and human diseases. Subcell. Biochem. 45, 337-363.
DOI
|
50 |
MacLennan, D. H., Rice, W. J., Odermatt, A. and Green, N. M. (1998). Structure-function relationships in the Ca (2+)-binding and translocation domain of SERCA1: physiological correlates in Brody disease. Acta. Physiol. Scand. 643(Suppl), 55-67.
|
51 |
Periasamy, M. and Kalyanasundaram, A. (2007). SERCA pump isoforms: their role in calcium transport and disease. Muscle. Nerve. 35, 430-442.
DOI
ScienceOn
|
52 |
Zhao, X., Weisleder, N., Han, X., Pan, Z., Parness, J., Brotto, M. and Ma, J. (2006). Azumolene inhibits a component of store-operated calcium entry coupled to the skeletal muscle ryanodine receptor. J. Biol. Chem. 281, 33477-33486.
DOI
|
53 |
Bannister, R. A., Pessah, I. N. and Beam, K. G. (2009). The skeletal L-type Ca (2+) current is a major contributor to excitation-coupled Ca (2+) entry. J. Gen. Physiol. 133, 79-91.
DOI
ScienceOn
|
54 |
Brotto, M. (2011). Aging, sarcopenia and store-operated calcium entry: a common link? Cell Cycle 10, 4201-4202.
DOI
|
55 |
Cherednichenko, G., Hurne, A. M., Fessenden, J. D., Lee, E. H., Allen, P. D., Beam, K. G. and Pessah, I. N. (2004). Conformational activation of Ca2+ entry by depolarization of skeletal myotubes. Proc. Natl. Acad. Sci. U. S. A. 101, 15793-15798.
DOI
ScienceOn
|
56 |
Dirksen, R. T. (2009). Checking your SOCCs and feet: the molecular mechanisms of Ca2+ entry in skeletal muscle. J. Physiol. 587, 3139-3147.
DOI
ScienceOn
|
57 |
Yarotskyy, V. and Dirksen, R. T. (2012). Temperature and RyR1 regulate the activation rate of store-operated Ca (2)+ entry current in myotubes. Biophys J. 103, 202-211.
DOI
ScienceOn
|
58 |
Pan, Z., Zhao, X. and Brotto, M. (2012). Fluorescencebased measurement of store-operated calcium entry in live cells: from cultured cancer cell to skeletal muscle fiber. J. Vis. Exp. pii: 3415, doi: 10.3791/3415.
DOI
|
59 |
Hou, X., Pedi, L., Diver, M. M. and Long, S. B. (2012). Crystal structure of the calcium release-activated calcium channel Orai. Science 338, 1308-1313.
DOI
|
60 |
Launikonis, B. S., Barnes, M. and Stephenson, D. G. (2003). Identification of the coupling between skeletal muscle store-operated Ca2+ entry and the inositol trisphosphate receptor. Proc. Natl. Acad. Sci. U S. A. 100, 2941-2944.
DOI
ScienceOn
|
61 |
Zhao, X., Moloughney, J. G., Zhang, S., Komazaki, S. and Weisleder, N. (2012). Orai1 mediates exacerbated Ca (2+) entry in dystrophic skeletal muscle. PLoS One 7, e49862.
DOI
|
62 |
Launikonis, B. S. and Rios, E. (2007). Store-operated Ca2+ entry during intracellular Ca2+ release in mammalian skeletal muscle. J. Physiol. 583, 81-97.
DOI
ScienceOn
|
63 |
Louis, M., Zanou, N., Van Schoor, M. and Gailly, P. (2008). TRPC1 regulates skeletal myoblast migration and differentiation. J. Cell Sci. 121, 3951-3959.
DOI
ScienceOn
|
64 |
Brinkmeier, H. (2011). TRP channels in skeletal muscle: gene expression, function and implications for disease. Adv. Exp. Med. Biol. 704, 749-758.
DOI
ScienceOn
|
65 |
Zhao, X., Weisleder, N., Thornton, A., Oppong, Y., Campbell, R., Ma, J. and Brotto, M. (2008). Compromised store-operated Ca2+ entry in aged skeletal muscle. Aging Cell 7, 561-568.
DOI
ScienceOn
|
66 |
Lyfenko, A. D. and Dirksen, R. T. (2008). Differential dependence of store-operated and excitation-coupled Ca2+ entry in skeletal muscle on STIM1 and Orai1. J. Physiol. 586, 4815-4824.
DOI
ScienceOn
|
67 |
Wei-Lapierre, L., Carrell, E. M., Boncompagni, S., Protasi, F. and Dirksen, R. T. (2013). Orai1-dependent calcium entry promotes skeletal muscle growth and limits fatigue. Nat. Commun. 4, 2805.
|
68 |
Flucher, B. E., Takekura, H. and Franzini-Armstrong, C. (1993). Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils. Dev. Biol. 160, 135-147.
DOI
ScienceOn
|
69 |
Mo, C., Romero-Suarez, S., Bonewald, L., Johnson, M. and Brotto, M. (2012). Prostaglandin E2: from clinical applications to its potential role in bone- muscle crosstalk and myogenic differentiation. Recent. Pat. Biotechnol. 6, 223-229.
DOI
|
70 |
Ma, J. and Pan, Z. (2003). Junctional membrane structure and store operated calcium entry in muscle cells. Front. Biosci. 8, d242-255.
DOI
|
71 |
Darbellay, B., Arnaudeau, S., Bader, C. R., Konig, S. and Bernheim, L. (2011). STIM1L is a new actin-binding splice variant involved in fast repetitive Ca2+ release. J. Cell Biol. 194, 335-346.
DOI
ScienceOn
|
72 |
Jahn, K., Lara-Castillo, N., Brotto, L., Mo, C. L., Johnson, M. L., Brotto, M. and Bonewald, L. F. (2012). Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of beta-catenin. Eur. Cell Mater. 24, 197-209.
DOI
|
73 |
Takeshima, H., Shimuta, M., Komazaki, S., Ohmi, K., Nishi, M., Iino, M., Miyata, A. and Kangawa, K. (1998). Mitsugumin29, a novel synaptophysin family member from the triad junction in skeletal muscle. Biochem. J. 331(Pt 1), 317-322.
DOI
|
74 |
Zhao, X., Yamazaki, D., Kakizawa, S., Pan, Z., Takeshima, H. and Ma, J. (2011). Molecular architecture of Ca2+ signaling control in muscle and heart cells. Channels (Austin) 5, 391-396.
DOI
|
75 |
Weisleder, N., Takeshima, H. and Ma, J. (2008). Immunoproteomic approach to excitation--contraction coupling in skeletal and cardiac muscle: molecular insights revealed by the mitsugumins. Cell Calcium. 43, 1-8.
DOI
ScienceOn
|
76 |
Komazaki, S., Nishi, M., Takeshima, H. and Nakamura, H. (2001). Abnormal formation of sarcoplasmic reticulum networks and triads during early development of skeletal muscle cells in mitsugumin29-deficient mice. Dev. Growth Differ. 43, 717-723.
DOI
ScienceOn
|
77 |
Nishi, M., Komazaki, S., Kurebayashi, N., Ogawa, Y., Noda, T., Iino, M. and Takeshima, H. (1999). Abnormal features in skeletal muscle from mice lacking mitsugumin29. J. Cell Biol. 147, 1473-1480.
DOI
|
78 |
Takeshima, H., Komazaki, S., Nishi, M., Iino, M. and Kangawa, K. (2000). Junctophilins: a novel family of junctional membrane complex proteins. Mol. Cell 6, 11-22.
|
79 |
Nishi, M., Sakagami, H., Komazaki, S., Kondo, H. and Takeshima, H. (2003). Coexpression of junctophilin type 3 and type 4 in brain. Brain Res. Mol. Brain Res. 118, 102-110.
DOI
|
80 |
Ito, K., Komazaki, S., Sasamoto, K., Yoshida, M., Nishi, M., Kitamura, K. and Takeshima, H. (2001). Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1. J. Cell Biol. 154, 1059-1067.
DOI
ScienceOn
|
81 |
Komazaki, S., Nishi, M. and Takeshima, H. (2003). Abnormal junctional membrane structures in cardiac myocytes expressing ectopic junctophilin type 1. FEBS Lett. 542, 69-73.
DOI
ScienceOn
|
82 |
Shin, D. W., Pan, Z., Kim, E. K., Lee, J. M., Bhat, M. B., Parness, J., Kim, D. H. and Ma, J. (2003). A retrograde signal from calsequestrin for the regulation of store-operated Ca2+ entry in skeletal muscle. J. Biol. Chem. 278, 3286-3292.
DOI
ScienceOn
|
83 |
Hirata, Y., Brotto, M., Weisleder, N., Chu, Y., Lin, P., Zhao, X., Thornton, A., Komazaki, S., Takeshima, H., Ma, J. and Pan, Z. (2006). Uncoupling store-operated Ca2+ entry and altered Ca2+ release from sarcoplasmic reticulum through silencing of junctophilin genes. Biophys. J. 90, 4418-4427.
DOI
ScienceOn
|
84 |
Kurebayashi, N. and Ogawa, Y. (2001). Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry into mouse skeletal muscle fibres. J. Physiol. 533, 185-199.
DOI
ScienceOn
|
85 |
Picard, C., McCarl, C. A., Papolos, A., Khalil, S., Luthy, K., Hivroz, C., LeDeist, F., Rieux-Laucat, F., Rechavi, G., Rao, A., Fischer, A. and Feske, S. (2009). STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N. Engl. J. Med. 360, 1971-1980.
DOI
ScienceOn
|
86 |
Stiber, J. A. and Rosenberg, P. B. (2011). The role of store-operated calcium influx in skeletal muscle signaling. Cell Calcium. 49, 341-349.
DOI
ScienceOn
|
87 |
Roos, J., DiGregorio, P. J., Yeromin, A. V., Ohlsen, K., Lioudyno, M., Zhang, S., Safrina, O., Kozak, J. A., Wagner, S. L., Cahalan, M. D., Velicelebi, G. and Stauderman, K. A. (2005). STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435-445.
DOI
ScienceOn
|
88 |
Nishi, M., Mizushima, A., Nakagawara, K. and Takeshima, H. (2000). Characterization of human junctophilin subtype genes. Biochem. Biophys. Res. Commun. 273, 920-927.
DOI
ScienceOn
|
89 |
Pan, Z., Hirata, Y., Nagaraj, R. Y., Zhao, J., Nishi, M., Hayek, S. M., Bhat, M. B., Takeshima, H. and Ma, J. (2004). Co-expression of MG29 and ryanodine receptor leads to apoptotic cell death: effect mediated by intracellular Ca2+ release. J. Biol. Chem. 279, 19387-19390.
DOI
ScienceOn
|
90 |
Zhao, X., Min, C. K., Ko, J. K., Parness, J., Kim do, H., Weisleder, N. and Ma, J. (2010). Increased store-operated Ca2+ entry in skeletal muscle with reduced calsequestrin- 1 expression. Biophys. J. 99, 1556-1564.
DOI
ScienceOn
|
91 |
Lowe, D. A., Husom, A. D., Ferrington, D. A. and Thompson, L. V. (2004). Myofibrillar myosin ATPase activity in hindlimb muscles from young and aged rats. Mech. Ageing. Dev. 125, 619-627.
DOI
ScienceOn
|
92 |
Volkers, M., Dolatabadi, N., Gude, N., Most, P., Sussman, M. A. and Hassel, D. (2012). Orai1 deficiency leads to heart failure and skeletal myopathy in zebrafish. J. Cell Sci. 125, 287-294.
DOI
|