Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.1.079

miR-29a suppresses growth and invasion of gastric cancer cells in vitro by targeting VEGF-A  

Chen, Ling (Department of Gastroenterology, the 324th Hospital of PLA)
Xiao, Hong (Department of Gastroenterology, the 324th Hospital of PLA)
Wang, Zong-Hua (School of Nursing, Third Military Medical University)
Huang, Yi (Department of Gastroenterology, the 324th Hospital of PLA)
Liu, Zi-Peng (Department of Gastroenterology, the 324th Hospital of PLA)
Ren, Hui (School of Nursing, Third Military Medical University)
Song, Hang (Department of Gastroenterology, the 324th Hospital of PLA)
Publication Information
BMB Reports / v.47, no.1, 2014 , pp. 39-44 More about this Journal
Abstract
Increasing data shows miR-29a is a key regulator of oncogenic processes. It is significantly down-regulated in some kind of human tumors and possibly functionally linked to cellular proliferation, survival and migration. However, the mechanism remains unclear. In this study, we report miR-29a is significantly under-expressed in gastric cancer compared to the healthy donor. The microvessel density is negatively related to miR-29a expression in gastric cancer tissues. The ectopic expression of miR-29a significantly inhibits proliferation and invasion of gastric cancer cells. Furthermore, western blot combined with the luciferase reporter assays demonstrate that vascular endothelial growth factor A (VEGF-A) is direct target of miR-29a. This is the first time miR-29a was found to suppress the tumor microvessel density in gastric cancer by targeting VEGF-A. Taken together, these results suggest that miR-29a is a tumor suppressor in gastric cancer. Restoration of miR-29a in gastric cancer may be a promising therapeutic approach.
Keywords
Gastric cancer; Hsa-miR-29a; MicroRNAs; Post-transcriptional regulation; VEGF-A;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shioya, M., Obayashi, S., Tabunoki, H., Arima, K., Saito, Y., Ishida, T. and Satoh, J. (2010) Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol. Appl. Neurobiol. 36, 320-330.   DOI   ScienceOn
2 Ahluwalia, J. K., Khan, S. Z., Soni, K., Rawat, P., Gupta, A., Hariharan, M., Scaria, V., Lalwani, M., Pillai, B., Mitra, D. and Brahmachari, S. K. (2008) Human cellular microRNA hsa-miR-29a interferes with viral nef protein expression and HIV-1 replication. Retrovirology 5, 117.   DOI   ScienceOn
3 Bandyopadhyay, S., Friedman, R. C., Marquez, R. T., Keck, K., Kong, B., Icardi, M. S., Brown, K. E., Burge, C. B., Schmidt, W. N., Wang, Y. and McCaffrey, A. P. (2011) Hepatitis C virus infection and hepatic stellate cell activation downregulate miR-29: miR-29 overexpression reduces hepatitis C viral abundance in culture. J. Infect. Dis. 203, 1753-1762.   DOI   ScienceOn
4 Li, J., Zhang, Y., Kuruba, R., Gao, X., Gandhi, C. R., Xie, W. and Li, S. (2011) Roles of miR-29a in the antifibrotic effect of FXR in hepatic stellate cells. Mol. Pharmacol. 89, 191-200.
5 Mulkeen, A. L., Silva, T., Yoo, P. S., Schmitz, J. C., Uchio, E., Chu, E. and Cha, C. (2006) Short interfering RNA-mediated gene silencing of vascular endothelial growth factor: effects on cellular proliferation in colon cancer cells. Arch. Surg. 141, 367-374.   DOI   ScienceOn
6 Petit, A. M., Rak, J., Hung, M. C., Rockwell, P., Goldstein, N., Fendly, B. and Kerbel, R. S. (1997) Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am. J. Pathol. 151, 1523-1530.
7 Des Guetz G, Uzzan, B., Nicolas, P., Cucherat, M., Morere, J. F., Benamouzig, R., Breau, J. L. and Perret, G. Y. (2006) Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. Br. J. Cancer 94, 1823-1832.   DOI   ScienceOn
8 Kolev, Y., Uetake, H., Iida, S., Ishikawa, T., Kawano, T. and Sugihara, K. (2007) Prognostic significance of VEGF expression in correlation with COX-2, microvessel density, and clinicopathological characteristics in human gastric carcinoma. Ann. Surg. Oncol. 14, 2738-2747.   DOI
9 Ugalde, A. P., Ramsay, A. J., de la Rosa, J., Varela, I., Marino, G., Cadinanos, J., Lu, J., Freije, J. M. and Lopez-Otin, C. (2011) Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53. EMBO J. 30, 2219-2232.   DOI   ScienceOn
10 Cui, Y., Su, W. Y., Xing, J., Wang, Y. C., Wang, P., Chen, X. Y., Shen, Z. Y., Cao, H., Lu, Y. Y. and Fang, J. Y. (2011) MiR-29a inhibits cell proliferation and induces cell cycle arrest through the downregulation of p42.3 in human gastric cancer. PLoS One 6, e25872.   DOI
11 Ghosh, R., Lipson, K. L., Sargent, K. E., Mercurio, A. M., Hunt, J. S., Ron, D. and Urano, F. (2010) Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PLoS One 5, e9575.   DOI   ScienceOn
12 Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.   DOI   ScienceOn
13 Weidner, N., Folkman, J., Pozza, F., Bevilacqua, P., Allred, E. N., Moore, D. H., Meli, S. and Gasparini, G. (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J. Natl. Cancer Inst. 84, 1875-1887.   DOI
14 Wicha, M. S. (2011) Stemming a tumor with a little miR. Nat. Med. 17, 162-164.   DOI   ScienceOn
15 Tie, J., Pan, Y., Zhao, L., Wu, K., Liu, J., Sun, S., Guo, X., Wang, B., Gang, Y., Zhang, Y., Li, Q., Qiao, T., Zhao, Q., Nie, Y. and Fan, D. (2010) MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor. PLoS Genet. 6, e1000879.   DOI   ScienceOn
16 Zhu, S., Si, M. L., Wu, H. and Mo, Y. Y. (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J. Biol. Chem. 282, 14328-14336.   DOI   ScienceOn
17 Kloosterman, W. P. and Plasterk, R. H. (2006) The diverse functions of microRNAs in animal development and disease. Dev. Cell 11, 441-450.   DOI   ScienceOn
18 Esquela-Kerscher, A. and Slack, F. J. (2006) Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259-269.   DOI   ScienceOn
19 Lewis, B. P., Burge, C. B. and Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20.   DOI   ScienceOn
20 Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M. and Croce, C. M. (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. U. S. A. 101, 2999-3004.   DOI   ScienceOn
21 Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S. and Mo, Y. Y. (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 18, 350-359.   DOI   ScienceOn
22 Hiyoshi, Y., Kamohara, H., Karashima, R., Sato, N., Imamura, Y., Nagai, Y., Yoshida, N., Toyama, E., Hayashi, N., Watanabe, M. and Baba, H. (2009) MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma. Clin. Cancer Res. 15, 1915-1922.   DOI   ScienceOn
23 Huang, L., Luo, J., Cai, Q., Pan, Q., Zeng, H., Guo, Z., Dong, W., Huang, J. and Lin, T. (2011) MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int. J. Cancer 128, 1758-1769.   DOI   ScienceOn
24 Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M. and Croce, C. M. (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. U. S. A. 101, 2999-3004.   DOI   ScienceOn
25 Lo, W. L., Yu, C. C., Chiou, G. Y., Chen, Y. W., Huang, P. I., Chien, C. S., Tseng, L. M., Chu, P. Y., Lu, K. H., Chang, K. W., Kao, S. Y. and Chiou, S. H. (2011) MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells. J. Pathol. 223, 482-495.   DOI   ScienceOn
26 Li, N., Fu, H., Tie, Y., Hu, Z., Kong, W., Wu, Y. and Zheng, X. (2009) miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett. 275, 44-53.   DOI   ScienceOn
27 Ward, B. P., Tsongalis, G. J. and Kaur, P. (2011) MicroRNAs in chronic lymphocytic leukemia. Exp. Mol. Pathol. 90, 173-178.   DOI   ScienceOn
28 Grimson, A., Farh, K. K., Johnston, W. K., Garrett-Engele, P., Lim, L. P. and Bartel, D. P. (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91-105.   DOI   ScienceOn
29 Maragkakis, M., Alexiou, P., Papadopoulos, G. L., Reczko, M., Dalamagas, T., Giannopoulos, G., Goumas, G., Koukis, E., Kourtis, K., Simossis, V. A., Sethupathy, P., Vergoulis, T., Koziris, N., Sellis, T., Tsanakas, P. and Hatzigeorgiou, A. G. (2009) Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics 10, 295.   DOI   ScienceOn
30 Maragkakis, M., Reczko, M., Simossis, V. A., Alexiou, P., Papadopoulos, G. L., Dalamagas, T., Giannopoulos, G., Goumas, G., Koukis, E., Kourtis, K., Vergoulis, T., Koziris, N., Sellis, T., Tsanakas, P. and Hatzigeorgiou, A. G. (2009) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res. 37, W273-276.   DOI   ScienceOn
31 Rehmsmeier, M., Steffen, P., Hochsmann, M. and Giegerich, R. (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507-1517.   DOI   ScienceOn
32 Hirakawa, S., Kodama, S., Kunstfeld, R., Kajiya, K., Brown, L. F. and Detmar, M. (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J. Exp. Med. 201, 1089-1099.   DOI   ScienceOn
33 Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S. and Calin, G. A. (2009) MicroRNAs--the micro steering wheel of tumour metastases. Nat. Rev. Cancer 9, 293-302.   DOI   ScienceOn
34 Pandey, A. K., Verma, G., Vig, S., Srivastava, S., Srivastava, A. K. and Datta, M. (2011) miR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells. Mol. Cell. Endocrinol. 332, 125-133.   DOI   ScienceOn
35 Kawashita, Y., Jinnin, M., Makino, T., Kajihara, I., Makino, K., Honda, N., Masuguchi, S., Fukushima, S., Inoue, Y. and Ihn, H. (2011) Circulating miR-29a levels in patients with scleroderma spectrum disorder. J. Dermatol. Sci. 61, 67-69.   DOI   ScienceOn
36 Hebert, S. S., Horre, K., Nicolai, L., Papadopoulou, A. S., Mandemakers, W., Silahtaroglu, A. N., Kauppinen, S., Delacourte, A. and De Strooper B (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression. Proc. Natl. Acad. Sci. U. S .A. 105, 6415-6420.   DOI   ScienceOn
37 Du B, Ma, L. M., Huang, M. B., Zhou, H., Huang, H. L., Shao, P., Chen, Y. Q. and Qu, L. H. (2010) High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett. 584, 811-816.   DOI   ScienceOn
38 Desjobert, C., Renalier, M. H., Bergalet, J., Dejean, E., Joseph, N., Kruczynski, A., Soulier, J., Espinos, E., Meggetto, F., Cavaille, J., Delsol, G. and Lamant, L. (2011) MiR-29a downregulation in ALK-positive anaplastic large-cell lymphomas contributes to apoptosis blockade MCL-1 overexpression. Blood. 117, 6627-6637.   DOI   ScienceOn