Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.1.048

Znf45l affects primitive hematopoiesis by regulating transforming growth factor-β signaling  

Chen, Huijuan (Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University)
Sun, Huaqin (Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University)
Tao, Dachang (Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University)
Yang, Ping (Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University)
Bian, Shasha (Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University)
Liu, Yunqiang (Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University)
Zhang, Sizhong (Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University)
Ma, Yongxin (Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University)
Publication Information
BMB Reports / v.47, no.1, 2014 , pp. 21-26 More about this Journal
Abstract
Znf45l, containing classical $C_2H_2$ domains, is a novel member of Zinc finger proteins in zebrafish. In vertebrates, TGF-${\beta}$ signaling plays a critical role in hematopoiesis. Here, we showed that Znf45l is expressed both maternally and zygotically throughout early development. Znf45l-depleted Zebrafish embryos display shorter tails and necrosis with reduced expression of hematopoietic maker genes. Furthermore, we revealed that znf45l locates downstream of TGF-${\beta}$ ligands and maintains normal level of TGF-${\beta}$ receptor type II phosphorylation. In brief, our results indicate that znf45l affects initial hematopoietic development through regulation of TGF-${\beta}$ signaling.
Keywords
Embryo; Hematopoiesis; TGF-${\beta}$; Zebrafish; Znf45l;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nostro, M. C., Cheng, X., Keller, G. M. and Gadue, P. (2008) Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell 2, 60-71.   DOI   ScienceOn
2 Rice, K. L., Hormaeche, I. and Licht, J. D. (2007) Epigenetic regulation of normal and malignant hematopoiesis. Oncogene 26, 6697-6714.   DOI   ScienceOn
3 Yue, R., Kang, J., Zhao, C., Hu, W., Tang, Y., Liu, X. and Pei, G. (2009) Beta-arrestin1 regulates zebrafish hematopoiesis through binding to YY1 and relieving polycomb group repression. Cell 139, 535-546.   DOI   ScienceOn
4 Paik, E. J. and Zon, L. I. (2010) Hematopoietic development in the zebrafish. Int. J. Dev. Biol. 54, 1127-1137.   DOI   ScienceOn
5 Orkin, S. H. and Zon, L. I. (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631-644.   DOI   ScienceOn
6 Whitman, M. (2001) Nodal signaling in early vertebrate embryos: themes and variations. Dev. Cell 1, 605-617.   DOI   ScienceOn
7 Massague, J. (1998) TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753-791.   DOI   ScienceOn
8 Feng, X. H. and Derynck, R. (2005) Specificity and versatility in tgf-beta signaling through Smads. Annu. Rev. Cell Dev. Biol. 21, 659-693.   DOI   ScienceOn
9 Heldin, C. H., Miyazono, K. and ten Dijke, P. (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465-471.   DOI   ScienceOn
10 Li, X., Jia, S., Wang, S., Wang, Y. and Meng, A. (2009) Mta3-NuRD complex is a master regulator for initiation of primitive hematopoiesis in vertebrate embryos. Blood 114, 5464-5472.   DOI   ScienceOn
11 Dooley, K. A., Davidson, A. J. and Zon, L. I. (2005) Zebrafish scl functions independently in hematopoietic and endothelial development. Dev. Biol. 277, 522-536.   DOI   ScienceOn
12 Chen, A. T. and Zon, L. I. (2009) Zebrafish blood stem cells. J. Cell. Biochem. 108, 35-42.   DOI   ScienceOn
13 Porcher, C., Liao, E. C., Fujiwara, Y., Zon, L. I. and Orkin, S. H. (1999) Specification of hematopoietic and vascular development by the bHLH transcription factor SCL without direct DNA binding. Development 126, 4603-4615.
14 Robu, M. E., Larson, J. D., Nasevicius, A., Beiraghi, S., Brenner, C., Farber, S. A. and Ekker, S. C. (2007) p53 activation by knockdown technologies. PloS Genet. 3, 787-801.
15 Soderberg, S. S., Karlsson, G. and Karlsson, S. (2009) Complex and context dependent regulation of hematopoiesis by TGF-beta superfamily signaling. Ann. N. Y. Acad. Sci. 1176, 55-69.   DOI   ScienceOn
16 Larsson, J. and Karlsson, S. (2005) The role of Smad signaling in hematopoiesis. Oncogene 24, 5676-5692.   DOI   ScienceOn
17 Wrighton, K. H., Lin, X. and Feng, X. H. (2009) Phospho-control of TGF-beta superfamily signaling. Cell Res. 19, 8-20.   DOI   ScienceOn
18 Zhang, K., Lu, Y., Yang, P., Li, C., Sun, H., Tao, D., Liu, Y., Zhang, S. and Ma, Y. (2012) HILI inhibits TGF-beta signaling by interacting with Hsp90 and promoting TbetaR degradation. PloS One 7, e41973.   DOI
19 Conlon, F. L., Lyons, K. M., Takaesu, N., Barth, K. S., Kispert, A., Herrmann, B. and Robertson, E. J. (1994) A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120, 1919-1928.
20 Sun, H., Li, D., Chen, S., Liu, Y., Liao, X., Deng, W., Li, N., Zeng, M., Tao, D. and Ma, Y. (2010) Zili inhibits transforming growth factor-beta signaling by interacting with Smad4. J. Biol. Chem. 285, 4243-4250.   DOI   ScienceOn
21 Liu, P., Wakamiya, M., Shea, M. J., Albrecht, U., Behringer, R. R. and Bradley, A. (1999) Requirement for Wnt3 in vertebrate axis formation. Nat. Genet. 22, 361-365.   DOI   ScienceOn
22 Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. and Schilling, T. F. (1995) Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310.   DOI   ScienceOn
23 Strausberg, R. L., Feingold, E. A., Grouse, L. H., Derge, J. G., Klausner, R. D., Collins, F. S., Wagner, L., Shenmen, C. M., Schuler, G. D., Altschul, S. F., Zeeberg, B., Buetow, K. H., Schaefer, C. F., Bhat, N. K., Hopkins, R. F., Jordan, H., Moore, T., Max, S. I., Wang, J., Hsieh, F., Diatchenko, L., Marusina, K., Farmer, A. A., Rubin, G. M., Hong, L., Stapleton, M., Soares, M. B., Bonaldo, M. F., Casavant, T. L., Scheetz, T. E., Brownstein, M. J., Usdin, T. B., Toshiyuki, S., Carninci, P., Prange, C., Raha, S. S., Loquellano, N. A., Peters, G. J., Abramson, R. D., Mullahy, S. J., Bosak, S. A., McEwan, P. J., McKernan, K. J., Malek, J. A., Gunaratne, P. H., Richards, S., Worley, K. C., Hale, S., Garcia, A. M., Gay, L. J., Hulyk, S. W., Villalon, D. K., Muzny, D. M., Sodergren, E. J., Lu, X., Gibbs, R. A., Fahey, J., Helton, E., Ketteman, M., Madan, A., Rodrigues, S., Sanchez, A., Whiting, M., Madan, A., Young, A. C., Shevchenko, Y., Bouffard, G. G., Blakesley, R. W., Touchman, J. W., Green, E. D., Dickson, M. C., Rodriguez, A. C., Grimwood, J., Schmutz, J., Myers, R. M., Butterfield, Y. S., Krzywinski, M. I., Skalska, U., Smailus, D. E., Schnerch, A., Schein, J. E., Jones, S. J., Marra, M. A. and Mammalian Gene Collection Program Team. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. U. S. A. 99, 16899-16903.   DOI   ScienceOn