Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.12.193

Role of Wnt signaling in fracture healing  

Xu, Huiyun (Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University)
Duan, Jing (Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University)
Ning, Dandan (Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University)
Li, Jingbao (Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University)
Liu, Ruofei (Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University)
Yang, Ruixin (Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University)
Jiang, Jean X. (Department of Biochemistry, University of Texas Health Science Center at San Antonio)
Shang, Peng (Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University)
Publication Information
BMB Reports / v.47, no.12, 2014 , pp. 666-672 More about this Journal
Abstract
The Wnt signaling pathway is well known to play major roles in skeletal development and homeostasis. In certain aspects, fracture repair mimics the process of bone embryonic development. Thus, the importance of Wnt signaling in fracture healing has become more apparent in recent years. Here, we summarize recent research progress in the area, which may be conducive to the development of Wnt-based therapeutic strategies for bone repair.
Keywords
Wnt signaling pathway; Fracture healing; ${\beta}$-catenin; Sost; GSK-$3{\beta}$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Loiselle, A. E., Lloyd, S. A. J., Paul, E. M., Lewis, G. S. and Donahue, H. J. (2013) Inhibition of GSK-3${\beta}$ rescues the impairments in bone formation and mechanical properties associated with fracture healing in osteoblast selective connexin 43 deficient mice. PloS one 8, e81399.   DOI   ScienceOn
2 Loiselle, A. E., Paul, E. M., Lewis, G. S. and Donahue, H. J. (2013) Osteoblast and osteocyte-specific loss of Connexin43 results in delayed bone formation and healing during murine fracture healing. J. Orthop. Res. 31, 147-154.   DOI   ScienceOn
3 Aspenberg, P. (2013) Annotation: Parathyroid hormone and fracture healing. Acta. Orthop. 84, 4-6.   DOI   ScienceOn
4 Bodine, P. V. N., Seestaller-Wehr, L., Kharode, Y. P., Bex, F. G. and Komm, B. S. (2007) Bone anabolic effects of parathyroid hormone are blunted by deletion of the Wnt antagonist secreted frizzled-related protein-1. J. Cell. Physiol. 210, 352-357.   DOI   ScienceOn
5 Ronga, M., Fagetti, A., Canton, G., Paiusco, E., Surace, M. F. and Cherubino, P. (2013) Clinical applications of growth factors in bone injuries: experience with BMPs. Injury 44, S34-S39.
6 Bostrom, M. P., Lane, J. M., Berberian, W. S., Missri, A. A., Tomin, E., Weiland, A., Doty, S. B., Glaser, D. and Rosen, V. M. (1995) Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J. Orthop. Res. 13, 357-367.   DOI   ScienceOn
7 Fourman, M. S., Borst, E. W., Bogner, E., Rozbruch, R. and Fragomen, A. T. (2014) Recombinant human BMP-2 increases the incidence and rate of healing in complex ankle arthrodesis. Clin. Orthop. Relat. Res. 472, 732-739.   DOI   ScienceOn
8 Lissenberg-Thunnissen, S. N., de Gorter, D. J., Sier, C. F. and Schipper, I. B. (2011) Use and efficacy of bone morphogenetic proteins in fracture healing. Int. Orthop. 35, 1271-1280.   DOI   ScienceOn
9 Chen, Y., Whetstone, H. C., Youn, A., Nadesan, P., Chow, E. C. Y., Lin, A. C. and Alman, B. A. (2007) ${\beta}$-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. J. Biol. Chem. 282, 526-533.   DOI   ScienceOn
10 Fischer, L., Boland, G. and Tuan, R. S. (2002) Wnt signaling during BMP-2 stimulation of mesenchymal chondrogenesis. J. Cell. Biochem. 84, 816-831.   DOI   ScienceOn
11 Lowik, C. and Van Bezooijen, R. L. (2006) Wnt signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J. Musculoskelet. Neuronal. Interact. 6, 357.
12 van Bezooijen, R. L., Svensson, J. P., Eefting, D., Visser, A., van der Horst, G., Karperien, M., Quax, P. H., Vrieling, H., Papapoulos, S. E., ten Dijke, P. and Lowik, C. W. (2007) Wnt but Not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J. Bone Miner. Res. 22, 19-28.
13 Yu, Y.Y., Lieu, S., Miclau, T., Colnot, C. and Marcucio, R. (2011) Effects of bone morphogenetic proteins on tgf-beta, wnt and bmp pathways during tibial fracture repair. FASEB J. 25 (Meeting Abstract Supplement), 680.
14 Regard, J. B., Zhong, Z., Williams, B. O. and Yang, Y. (2012) Wnt signaling in bone development and disease: making stronger bone with Wnts. Cold Spring Harb. Perspect. Biol. 4, a007997.
15 Nusslein-Volhard, C. and Wieschaus, E. (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287, 795-801.   DOI   ScienceOn
16 Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D. and Nusse, R. (1987) The Drosophila homology of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649-657.   DOI   ScienceOn
17 Nusse, R. and Varmus, H. (2012) Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J. 31, 2670-2684.   DOI
18 Silkstone, D., Hong, H. and Alman, B. A. (2008) ${\beta}$-Catenin in the race to fracture repair: in it to Wnt. Nat. Clin. Pract. Rheumatol. 4, 413-419.   DOI   ScienceOn
19 Chen, Y. and Alman, B. A. (2009) Wnt pathway, an essential role in bone regeneration. J. Cell. Biochem. 106, 353-362.   DOI   ScienceOn
20 Bruder, S. P., Fink, D. J. and Caplan, A. I. (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regenaration therapy. J. Cell. Biochem. 56, 283-294.
21 Einhorn, T. A. (2010) The Wnt signaling pathway as a potential target for therapies to enhance bone repair. Sci. Transl. Med. 2, 42ps36.
22 Tzioupis, C. and Giannoudis, P. V. (2007) Prevalence of long-bone non-unions. Injury 38, S3-S9.
23 Hak, D. J., Fitzpatrick, D., Bishop, J. A., Marshd, J. L., Tilpe, S., Schnettlere, R., Simpsonf, H. and Alte, V. (2014) Delayed union and nonunions: Epidemiology, clinical issues, and financial aspects. Injury 45, S3-S7.
24 Bhanot, P., Brink, M., Samos, C. H., Hsieh, J. C., Wang, Y., Macke, J. P., Andrew, D., Nathans, J. and Nusse, R. (1996) A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225-230.   DOI   ScienceOn
25 He, X., Semenov, M., Tamai, K. and Zeng, X. (2004) LDL receptor-related proteins 5 and 6 in Wnt/${\beta}$-catenin signaling: arrows point the way. Development 131, 1663-1677.   DOI   ScienceOn
26 Eastman, Q. and Grosschedl, R. (1999) Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr. Opin. Cell Biol. 11, 233-240.   DOI   ScienceOn
27 Nakamura, R. E. I. and Hackam, A. S. (2010) Analysis of Dickkopf3 interactions with Wnt signaling receptors. Growth Factors 28, 232-242.   DOI   ScienceOn
28 Slusarski, D. C., Corces, V. G. and Moon, R. T. (1997) Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390, 410-413.   DOI   ScienceOn
29 De, A. (2011) Wnt/$Ca^{2+}$ signaling pathway: a brief overview. Acta Biochim. Biophys. Sin. 43, 745-756.   DOI   ScienceOn
30 Kuhl, M. (2004) The WNT/calcium pathway: biochemical mediators, tools and future requirements. Front. Biosci. 9, 967-974.   DOI
31 Hoeppner, L. H., Secreto, F. J. and Westendorf, J. J. (2009) Wnt signaling as a therapeutic target for bone diseases. Expert Opin. Ther. Targets 13, 485-496.   DOI   ScienceOn
32 Patthy, L. (2000) The WIF module. Trends Biochem. Sci. 25, 12-13.   DOI   ScienceOn
33 Einhorn, T. A. (1998) The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res. 355, S7-S21.
34 Marsell, R. and Einhorn, T. A. (2011) The biology of fracture healing. Injury 42, 551-555.   DOI   ScienceOn
35 Schindeler, A., McDonald, M. M., Bokko, P. and Little, D. G. (2008) Bone remodeling during fracture repair: The cellular picture. Semin. Cell Dev. Biol. 19, 459-466.   DOI   ScienceOn
36 Phillips, A. M. (2005) Overview of the fracture healing cascade. Injury 36, S5-S7.   DOI   ScienceOn
37 Chen, Y., Whetstone, H. C., Lin, A. C., Nadesan, P., Wei, Q., Poon, R. and Alman, B. A. (2007) Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med. 4, e249.   DOI
38 Leucht, P., Kim, J. B. and Helms, J. A. (2008) Beta-catenin-dependent Wnt signaling in mandibular bone regeneration. J. Bone Joint. Surg. 90, 3-8.
39 Hadjiargyrou, M., Lombardo, F., Zhao, S., Ahrens, W., Joo, J., Ahn, H., Jurman, M., White, D. W. and Rubin, C. T. (2002) Transcriptional profiling of bone regeneration Insight into the molecular complexity of wound repair. J. Biol. Chem. 277, 30177-30182.   DOI   ScienceOn
40 Zhong, N., Gersch, R. P. and Hadjiargyrou, M. (2006) Wnt signaling activation during bone regeneration and the role of Dishevelled in chondrocyte proliferation and differentiation. Bone 39, 5-16.   DOI   ScienceOn
41 Macsai, C. E., Georgiou, K. R., Foster, B. K., Zannettino, A. C. W. and Xian, C. J. (2012) Microarray expression analysis of genes and pathways involved in growth plate cartilage injury responses and bony repair. Bone 50, 1081-1091.   DOI   ScienceOn
42 Kim, J. B., Leucht, P., Lam, K., Luppen, C., Ten Berge, D., Nusse, R. and Helms, J. A. (2007) Bone regeneration is regulated by wnt signaling. J. Bone Miner. Res. 22, 1913-1923.   DOI   ScienceOn
43 Bollerslev, J., Wilson, S. G., Dick, I. M., Dick, I. M., Islam, F. M. A., Ueland, T., Palmer, L., Devine, A., Prince, R. L. (2005) LRP5 gene polymorphisms predict bone mass and incident fractures in elderly Australian women. Bone 36, 599-606.   DOI   ScienceOn
44 van Meurs, J. B. J., Rivadeneira, F., Jhamai, M., Hugens, W., Hofman, A., van Leeuwen, J. P., Pols, H. A. and Uitterlinden, A. G. (2006) Common genetic variation of the low-density lipoprotein receptor-related protein 5 and 6 genes determines fracture risk in elderly white men. J. Bone Miner. Res. 21, 141-150.
45 Komatsu, D. E., Mary, M. N., Schroeder, R. J., Robling, A. G., Turner, C. H. and Warden, S. J. (2010) Modulation of Wnt signaling influences fracture repair. J. Orthop. Res. 28, 928-936.
46 Sisask, G., Marsell, R., Sundgren-Andersson, A., Larsson, S., Nilsson, O., Ljunggren, O. and Jonsson, K. B. (2013) Rats treated with AZD2858, a GSK3 inhibitor, heal fractures rapidly without endochondral bone formation. Bone 54, 126-132.   DOI   ScienceOn
47 Phiel, C. J. and Klein, P. S. (2001) Molecular targets of lithium action. Annu. Rev. Pharmacol. Toxicol. 41, 789-813.   DOI   ScienceOn
48 Lauing, K. L., Sundaramurthy, S., Nauer, R. K. and Callaci, J. J. (2014) Exogenous activation of Wnt/${\beta}$-Catenin signaling attenuates binge alcohol-induced deficient bone fracture healing. Alcohol. Alcohol. 9, 399-408.
49 Vestergaard, P., Rejnmark, L. and Mosekilde, L. (2005) Reduced relative risk of fractures among users of lithium. Calcif. Tissue Int. 77, 1-8.   DOI
50 Kawano, Y. and Kypta, R. (2003) Secreted antagonists of the Wnt signalling pathway. J. Cell Sci. 116, 2627-2634.   DOI   ScienceOn
51 Bodine, P. V. N., Zhao, W., Kharode, Y. P., Bex, F. J., Lambert, A. J., Goad, M. B., Gaur, T., Stein, G. S., Lian, J. B., and Komm, B. S. (2004) The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol. Endocrinol. 18, 1222-1237.   DOI   ScienceOn
52 Gaur, T., Wixted, J. J., Hussain, S., O'Connell, S. L., Morgan, E. F., Ayers, D. C., Komm, B. S., Bodine, P. V., Stein, G. S. and Lian, J. B. (2009) Secreted frizzled related protein 1 is a target to improve fracture healing. J. Cell. Physiol. 220, 174-181.   DOI   ScienceOn
53 Semenov, M., Tamai, K. and He, X. (2005) Sost is a ligand for lrp5/lrp6 and a wnt signaling inhibitor. J. Biol. Chem. 280, 26770-26775.   DOI   ScienceOn
54 Ominsky, M. S., Li, C., Li, X., Tan, H. L., Lee, E., Barrero, M., Asuncion, F. J., Dwyer, D., Han, C. Y., Vlasseros, F., Samadfam, R., Jolette, J., Smith, S. Y., Stolina, M., Lacey, D. L., Simonet, W. S., Paszty, C., Li, G. and Ke, H. Z. (2011) Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J. Bone Miner. Res. 26, 1012-1021.   DOI   ScienceOn
55 Li, X., Ominsky, M. S., Niu, Q. T., Sun, N., Daugherty, B., D'Agostin, D., Kurahara, C., Gao, Y., Cao, J., Gong, J., Asuncion, F., Barrero, M., Warmington, K., Dwyer, D., Stolina, M., Morony, S., Sarosi, I., Kostenuik, P. J., Lacey, D. L., Simonet, W. S., Ke, H. Z. and Paszty, C. (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J. Bone Miner. Res. 23, 860-869.   DOI   ScienceOn
56 Li, C., Ominsky, M. S., Tan, H. L., Barrero, M., Niu, Q. T., Asuncion, F. J., Lee, E., Liu, M., Simonet, W. S., Paszty, C. and Ke, H. Z. (2011) Increased callus mass and enhanced strength during fracture healing in mice lacking the sclerostin gene. Bone 49, 1178-1185.   DOI   ScienceOn
57 Sarahrudi, K., Thomas, A., Albrecht, C. and Aharinejad, S. (2012) Strongly enhanced levels of sclerostin during human fracture healing. J. Orthop. Res. 30, 1549-1555.   DOI   ScienceOn
58 Virk, M. S., Alaee, F., Tang, H., Ominsky, M. S., Ke, H. Z. and Lieberman, J. R. (2013) Systemic administration of sclerostin antibody enhances bone repair in a critical-sized femoral defect in a rat model. J. Bone Joint. Surg. 95, 694-701.   DOI   ScienceOn
59 Gamie, Z., Korres, N., Leonidou, A., Gray, A. C. and Tsiridis, E. (2012) Sclerostin monoclonal antibodies on bone metabolism and fracture healing. Exper. Opin. Inv. Drug 21, 1523-1534.   DOI   ScienceOn
60 Jawad, M. U., Fritton, K. E., Ma, T., Ren, P. G., Goodman, S. B., Ke, H. Z., Babij, P. and Genovese, M. C. (2013) Effects of sclerostin antibody on healing of a non-critical size femoral bone defect. J. Orthop. Res. 31, 155-163.   DOI   ScienceOn
61 Suen, P. K., He, Y. X., Chow, D. H. K., Huang, L., Li, C., Ke, H. Z., Ominsky, M. S. and Qin, L. (2014) Sclerostin monoclonal antibody enhanced bone fracture healing in an open osteotomy model in rats. J. Orthop. Res. 32, 997-1005.   DOI   ScienceOn
62 Agholme, F., Li, X., Isaksson, H., Ke, H. Z. and Aspenberg, P. (2010) Sclerostin antibody treatment enhances metaphyseal bone healing in rats. J. Bone Miner. Res. 25, 2412-2418.   DOI
63 Alaee, F., Virk, M. S., Tang. H., Sugiyama, O., Adams, D. J., Stolina, M., Dwyer, D., Ominsky, M. S., Ke, H. Z. and Lieberman, J. R. (2014) Evaluation of the effects of systemic treatment with a sclerostin neutralizing antibody on bone repair in a rat femoral defect model. J. Orthop. Res. 32, 197-203.   DOI
64 Morvan, F., Boulukos, K., Clement-Lacroix, P., Roman, S. R., Suc-Royer, I., Vayssiere, B., Ammann, P., Martin, P., Pinho, S., Pognonec, P., Mollat, P., Niehrs, C., Baron, R. and Rawadi, G. (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J. Bone Miner. Res. 21, 934-945.   DOI   ScienceOn
65 Li, X., Grisanti, M., Fan, W., Asuncion, F. J., Tan, H. L., Dwyer, D., Han, C. Y., Yu, L., Lee, J., Lee, E., Barrero, M., Kurimoto, P., Niu, Q. T., Geng, Z., Winters, A., Horan, T., Steavenson, S., Jacobsen, F., Chen, Q., Haldankar, R., Lavallee, J., Tipton, B., Daris, M., Sheng, J., Lu, H. S., Daris, K., Deshpande, R., Valente, E. G., Salimi-Moosavi, H., Kostenuik, P. J., Li, J., Liu, M., Li, C., Lacey, D. L., Simonet, W. S., Ke, H. Z., Babij, P., Stolina, M., Ominsky, M. S., Richards, W. G. (2011) Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J. Bone Miner. Res. 26, 2610-2621.   DOI   ScienceOn
66 Glinka, A., Wu, W., Delius, H., Monaghan, A. P., Blumenstock, C. and Niehrs, C. (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357-362.   DOI   ScienceOn
67 Nusse, R. (1999) WNT targets: repression and activation. Trends Genet. 15, 1-3.   DOI   ScienceOn
68 Kakar, S., Einhorn, T. A., Vora, S., Miara, L. J., Hon, G., Wigner, N. A., Toben, D., Jacobsen, K. A., Al-Sebaei, M. O., Song, M., Trackman, P. C., Morgan, E. F., Gerstenfeld, L. and Barnes, G. L. (2007) Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J. Bone Miner. Res. 22, 1903-1912.   DOI   ScienceOn
69 McGee-Lawrence, M. E., Ryan, Z. C., Carpio, L. R., Kakar, S., Westendorf, J. J. and Kumar, R. (2013) Sclerostin deficient mice rapidly heal bone defects by activating ${\beta}$-catenin and increasing intramembranous ossification. Biochem. Biophys. Res. Commun. 441, 886-890.   DOI   ScienceOn
70 Mbalaviele, G., Sheikh, S., Stains, J. P., Salazar, V. S., Cheng, S., Chen, D. and Civitelli, R. (2005) ${\beta}$-Catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. J. Cell. Biochem. 94, 403-418.   DOI   ScienceOn