Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.10.144

In vivo putative O-GlcNAcylation of human SCP1 and evidence for possible role of its N-terminal disordered structure  

Koo, JaeHyung (Department of Brain Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST))
Bahk, Young Yil (Department of Biotechnology, Konkuk University)
Publication Information
BMB Reports / v.47, no.10, 2014 , pp. 593-598 More about this Journal
Abstract
RNA polymerase II carboxyl-terminal domain (RNAPII CTD) phosphatases are responsible for the dephosphorylation of the C-terminal domain of the small subunit of RNAPII in eukaryotes. Recently, we demonstrated the identification of several interacting partners with human small CTD phosphatase1 (hSCP1) and the substrate specificity to delineate an appearance of the dephosphorylation catalyzed by SCP1. In this study, using the established cells for inducibly expressing hSCP1 proteins, we monitored the modification of ${\beta}$-O-linked N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation is one of the most common post-translational modifications (PTMs). To gain insight into the PTM of hSCP1, we used the Western blot, immunoprecipitation, succinylayed wheat germ agglutinin-precipitation, liquid chromatography-mass spectrometry analyses, and site-directed mutagenesis and identified the $Ser^{41}$ residue of hSCP1 as the O-GlcNAc modification site. These results suggest that hSCP1 may be an O-GlcNAcylated protein in vivo, and its N-terminus may function a possible role in the PTM, providing a scaffold for binding the protein(s).
Keywords
CTD phosphatase SCP1; Inducible mammalian expression system; O-GlcNAc; Post-translational modification;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Fabian-Marwedel, T., Umeda, M. and Sauter, M. (2002) The rice cyclin-dependent kinase-activating kinase R2 regulates S-phase progression. Plant Cell 14, 197-210.   DOI
2 Zhang, Y., Kim, Y., Genoud, N., Gao, J., Kelley, J. W., Pfaff, S. L., Gill, G. N., Dixon, J. E. and Noel, J. P. (2006) Determinants for dephosphorylation of the RNA polymerase II C-terminal domain by Scp1. Mol. Cell 24, 759-770.   DOI   ScienceOn
3 Kamenski, T., Heilmeier, S., Meinhart, A. and Cramer, P. (2004) Structure and mechanism of RNA polymerase II CTD phosphatases. Mol. Cell 15, 399-407.   DOI   ScienceOn
4 Yang, W. H., Kim, J. E., Nam, H. W., Ju, J. W., Kim, H. S., Kim, Y. S. and Cho, J. W. (2006) Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat. Cell Biol. 8, 1074-1083.   DOI   ScienceOn
5 Zachara, N. E., Molina, H., Wong, K. Y., Pandey, A. and Hart, G. W. (2011) The dynamic stress-induced "O-Glcnacome" highlights functions for O-GlcNAc in regulating DNA damage/ repair and other cellular pathways. Amino Acids 40, 793-808.   DOI
6 Kelly, W. G., Dahmus, M. E. and Hart, G. W. (1993) RNA polymerase II is a glycoprotein: Modification of the COOH-terminal domain by O-GlcNAc. J. Biol. Chem. 268, 10416-10424.
7 Eicks, D. and Geyer, M. (2013) The RNA polymerase II carboxyl- terminal domain (CTD) code. Chem. Rev. 113, 8456-8490.   DOI   ScienceOn
8 Proudfoot, N. J., Furger, A. and Dye, M. J. (2002) Integrating mRNA processing with transcription. Cell 108, 501-512.   DOI   ScienceOn
9 Palancade, B. and Bensaude, O. (2003) Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation. Eur. J. Biochem. 270, 3859-3870.   DOI   ScienceOn
10 Buratowski, S. (2003) The CTD code. Nat. Struct. Biol. 10, 679-680.   DOI   ScienceOn
11 Zachara, N. E., Vosseller, K. and Hart, G. W. (2011) Detection and analysis of proteins modified by O-linked N-acetylglucosamine. Curr. Protoc. Protein Sci. 66, 12.8.1-12.8.33.
12 Hart, G. W., Housley, M. P. and Slawson, C. (2007) Cycling of O-linked $\beta$-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446, 1017-1022.   DOI   ScienceOn
13 Kim, Y. J. and Bahk, Y. Y. (2014) A study of substrate specificity for a CTD phosphatase, SCP1, by proteomics screening of binding partners. Biochem. Biophys. Res. Comm. 448, 189-124.   DOI   ScienceOn
14 Kim, S., Lee, Y. Z., Kim, Y. S. and Bahk, Y. Y. (2008) A proteomic approach for protein-profiling the oncogenic ras induced transformation (H-, K-, and N-ras) in NIH/3T3 mouse embryonic fibroblasts. Proteomics 8, 3082-3093.   DOI   ScienceOn
15 Bahk, Y. Y., Cho, I.-H. and Kim, T. S. (2008) A cross-talk between oncogenic Ras and tumor suppressor PTEN through FAK Tyr861 phosphorylation in NIH/3T3 mouse embryonic fibroblasts. Biochem. Biophys. Res. Comm. 377, 1199-1204.   DOI   ScienceOn
16 Jaramillo-Tatis, S., Bamm, V. V., Vassall, K. A. and Harauz, G. (2014) Over-expression in E. coli and purification of functional full-length murine small C-terminal domain phosphatase (SCP1, or Golli-interacting protein). Protein Expr. Purif. http://dx.doi.org/10.1016/j.pep.2010.05.013.
17 Zhang, M., Liu, J., Kim, Y., Dixon, J. E., Pfaff, S. L., Gill, G. N., Noel, J. P. and Zhang, Y. (2010) Structural and functional analysis of the phosphoryl transfer reaction mediated by the human small C-terminal domain phosphatase, SCP1. Protein Sci. 19, 974-986.
18 Kriwacki, R. W., Hengst, L., Tennant, L., Reed, S. I. and Wright, P. E. (1996) Structural studies of p21Waf1/Cip1/ Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc. Natl. Acad. Sci. U.S.A. 93, 11504-11509.   DOI   ScienceOn
19 Uversky, V. N. (2013) The most important thing is the tail: multitudinous functionalities of intrinsically disordered protein termini. FEBS Lett. 587, 1891-1901.   DOI   ScienceOn
20 Uversky, V. N., Gillespie, J. R. and Fink, A. L. (2000) Why are natively unfolded proteins unstructured under physiologic conditions. Proteins 41, 415-427.   DOI
21 Bahk, Y. Y., Lee, J., Cho, I.-H. and Lee H.-W. (2010) An analysis of an interactome for apoptosis factor, Ei24/PIG8, using the inducible expression system and shotgun proteomics. J. Proteome Res. 9, 5270-5283.   DOI   ScienceOn
22 Lim, Y., Han, I., Jeon, J., Park, H., Bahk, Y. Y. and Oh, E.S. (2004) Phosphorylation of focal adhesion kinase at tyrosine 861 is crucial for Ras transformation of fibroblasts. J. Biol. Chem. 279, 29060-29065.   DOI   ScienceOn
23 Koiwa, H., Hausmann, S., Bang, W. Y., Ueda, A., Kondo, N., Hiraguri, A., Fukuhara, T., Bahk, J. D., Yun, D. J., Bressan, R. A., Hasegawa, P. M. and Shuman, S. (2004) Arabidopsis C-terminal domain phosphatase-like 1 and 2 are essential Ser-5-specific C-terminal domain phosphatases. Proc. Natl. Acad. Sci. U.S.A. 101, 14539-14544.   DOI   ScienceOn
24 Phatnani, H. P. and Greenleaf, A. L. (2006) Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922-2936.   DOI   ScienceOn
25 Chapman, R. D., Heidemann, M., Albert, T. K., Mailhammer, R., Flatley, A., Meisterernst, M., Kremmer, E. and Eicks, D. (2007) Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318, 1780-1782.   DOI   ScienceOn
26 Lin, P. S., Marshall, N. F. and Dahmus, M. E. (2002) CTD phosphatase: role in RNA polymerase II cycling and the regulation of transcription elongation. Prog. Nucleic Acid Res. Mol. Biol. 72, 333-365.   DOI
27 Cho, E. J., Kobor, M. S., Kim, M. and Buratowski, S. (2001) Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser2 of the RNA polymerase II C-terminal domain. Genes Dev. 15, 3319-3329.   DOI   ScienceOn
28 Bataille, A. R., Jeronimo, C., Jacques, P. É., Laramee, L., Fortin, M. E., Forest, A., Bergeron, M., Hanes, S. D. and Robert, F. (2012) A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol. Cell 45, 158-170.   DOI   ScienceOn
29 Harikrishna, R. R., Kim, H., Noh, K. and Kim Y. J. (2014) Diverse roles of RNA polymerase II C-terminal domain phosphatase SCP1. BMB Rep. 47, 192-196.   DOI   ScienceOn
30 Yeo, M., Lee, S. K., Lee, B., Ruiz, E. C., Pfaff, S. L. and Gill, G. N. (2005) Small CTD phosphatases function in silencing neuronal gene expression. Science 307, 596-600.   DOI   ScienceOn