Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.9.180

Emerging role of sirtuins on tumorigenesis: possible link between aging and cancer  

Cha, Yong I. (Department of Radiation Oncology, Norton Cancer Institute)
Kim, Hyun-Seok (Department of Life Science, Ewha Womans University)
Publication Information
BMB Reports / v.46, no.9, 2013 , pp. 429-438 More about this Journal
Abstract
Aging is the strongest risk factor for cancer development, suggesting that molecular crosstalks between aging and tumorigenesis exist in many cellular pathways. Recently, Sirtuins (Sirt1-7), the mammalian homologues of aging-related $sir2{\alpha}$ in yeast, have been shown to modulate several major cellular pathways, such as DNA repair, inflammation, metabolism, cell death, and proliferation in response to diverse stresses, and may serve as a possible molecular link between aging and tumorignenesis. In addition, growing evidence suggests that sirtuins are directly implicated in the development of cancer, and they can act as either a tumor suppressor or promoter, depending on the cellular context and tumor types. While the functions of Sirt1 in tumorigenesis have been reported and reviewed in many studies, the connection between sirtuins 2-7 and the development of cancer is less established. Thus, this review will present the recent updates on the emerging roles of Sirt2-7 members in carcinogenesis.
Keywords
Acetylation; Aging; Deacetylase; Sirtuin; Tumorigenesis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Tao, R., Coleman, M. C., Pennington, J. D., Ozden, O., Park, S. H., Jiang, H., Kim, H. S., Flynn, C. R., Hill, S., Hayes McDonald, W., Olivier, A. K., Spitz, D. R. and Gius, D. (2010) Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 40, 893-904.   DOI   ScienceOn
2 Chen, Y., Zhang, J., Lin, Y., Lei, Q., Guan, K. L., Zhao, S. and Xiong, Y. (2011) Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep. 12, 534-541.   DOI   ScienceOn
3 Finley, L. W., Carracedo, A., Lee, J., Souza, A., Egia, A., Zhang, J., Teruya-Feldstein, J., Moreira, P. I., Cardoso, S. M., Clish, C. B., Pandolfi, P. P. and Haigis, M. C. (2011) SIRT3 opposes reprogramming of cancer cell metabolism through HIF1$\alpha$ destabilization. Cancer Cell 19, 416-428.   DOI   ScienceOn
4 Inuzuka, H., Gao, D., Finley, L. W., Yang, W., Wan, L., Fukushima, H., Chin, Y. R., Zhai, B., Shaik, S., Lau, A. W., Wang, Z., Gygi, S. P., Nakayama, K., Teruya-Feldstein, J., Toker, A., Haigis, M. C., Pandolfi, P. P. and Wei, W. (2012) Acetylation-dependent regulation of Skp2 function. Cell 50, 179-193.
5 Finley, L. W. and Haigis, M. C. (2012) Metabolic regulation by SIRT3: implications for tumorigenesis. Trends Mol. Med. 18, 516-523.   DOI   ScienceOn
6 Haigis, M. C., Mostoslavsky, R., Haigis, K. M., Fahie, K., Christodoulou, D. C., Murphy, A. J., Valenzuela, D. M., Yancopoulos, G. D., Karow, M., Blander, G., Wolberger, C., Prolla, T. A., Weindruch, R., Alt, F. W. and Guarente, L. (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126, 941-954.   DOI   ScienceOn
7 Laurent, G., German, N. J., Saha, A. K., de Boer, V. C., Davies, M., Koves, T. R., Dephoure, N., Fischer, F., Boanca, G., Vaitheesvaran, B., Lovitch, S. B., Sharpe, A. H., Kurland, I. J., Steegborn, C., Gygi, S. P., Muoio, D. M., Ruderman, N. B. and Haigis, M. C. (2013) SIRT4 Coordinates the Balance between Lipid Synthesis and Catabolism by Repressing Malonyl CoA Decarboxylase. Mol. Cell 50, 686-698.   DOI   ScienceOn
8 Nasrin, N., Wu, X., Fortier, E., Feng, Y., Bare', O. C., Chen, S., Ren, X., Wu, Z., Streeper, R. S. and Bordone, L. (2010) SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J. Biol. Chem. 285, 31995-32002.   DOI   ScienceOn
9 Ahn, B. H., Kim, H. S., Song, S., Lee, I. H., Liu, J., Vassilopoulos, A., Deng, C. X. and Finkel, T. (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. U. S. A. 105, 14447-14452.   DOI   ScienceOn
10 Hirschey, M. D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., Lombard, D. B., Grueter, C. A., Harris, C., Biddinger, S., Ilkayeva, O. R., Stevens, R. D., Li, Y., Saha, A. K., Ruderman, N. B., Bain, J. R., Newgard, C. B., Farese, R. V. Jr., Alt, F. W., Kahn, C. R. and Verdin, E. (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121-125.   DOI   ScienceOn
11 Kong, X., Wang, R., Xue, Y., Liu, X., Zhang, H., Chen, Y., Fang, F. and Chang, Y. (2010) Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 5, e11707.   DOI   ScienceOn
12 Kim, H. S., Patel, K., Muldoon-Jacobs, K., Bisht, K. S., Aykin-Burns, N., Pennington, J. D., van der Meer, R., Nguyen, P., Savage, J., Owens, K. M., Vassilopoulos, A., Ozden, O., Park, S. H., Singh, K. K., Abdulkadir, S. A., Spitz, D. R., Deng, C. X. and Gius, D. (2010) SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell. 17, 41-52.   DOI   ScienceOn
13 Anderson, K. A. and Hirschey, M. D. (2012) Mitochondrial protein acetylation regulates metabolism. Essays Biochem. 52, 23-35.   DOI
14 Dan, L., Klimenkova, O., Klimiankou, M., Klusman, J. H., van den Heuvel-Eibrink, M. M., Reinhardt, D., Welte, K. and Skokowa, J. (2012) The role of sirtuin 2 activation by nicotinamide phosphoribosyltransferase in the aberrant proliferation and survival of myeloid leukemia cells. Haematologica. 97, 551-559.   DOI
15 Someya, S., Yu, W., Hallows, W. C., Xu, J., Vann, J. M., Leeuwenburgh, C., Tanokura, M., Denu, J. M. and Prolla, T. A. (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143, 802-812.   DOI   ScienceOn
16 Hebert, A. S., Dittenhafer-Reed, K. E., Yu, W., Bailey, D. J., Selen, E. S., Boersma, M. D., Carson, J. J., Tonelli, M., Balloon, A. J., Higbee, A. J., Westphall, M. S., Pagliarini, D. J., Prolla, T. A., Assadi-Porter, F., Roy, S., Denu, J. M. and Coon, J. J. (2013) Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell 49, 186-199.
17 Ong, C. A., Shapiro, J., Nason, K. S., Davison, J. M., Liu, X., Ross-Innes, C., O'Donovan, M., Dinjens, W. N., Biermann, K., Shannon, N., Worster, S., Schulz, L. K., Luketich, J. D., Wijnhoven, B. P., Hardwick, R. H. and Fitzgerald, R. C. (2013) Three-gene immunohistochemical panel adds to clinical staging algorithms to predict prognosis for patients with esophageal adenocarcinoma. J. Clin. Oncol. 31, 1576-1582.   DOI   ScienceOn
18 Liu, P. Y., Xu, N., Malyukova, A., Scarlett, C. J., Sun, Y. T., Zhang, X. D., Ling, D., Su, S. P., Nelson, C., Chang, D. K., Koach, J., Tee, A. E., Haber, M., Norris, M. D., Toon, C., Rooman, I., Xue, C., Cheung, B. B., Kumar, S., Marshall, G. M., Biankin, A. V. and Liu, T. (2013) The histone deacetylase SIRT2 stabilizes Myc oncoproteins. Cell Death Differ. 20, 503-514.   DOI   ScienceOn
19 Chen, J., Chan, A. W., To, K. F., Chen, W., Zhang, Z., Ren, J., Song, C., Cheung, Y. S., Lai, P. B., Cheng, S. H., Ng, M. H., Huang, A. and Ko, B. C. (2013) SIRT2 overexpression in hepatocellular carcinoma mediates epithelial to mesenchymal transition by protein kinase B/glycogen synthase kinase-$3\beta$/$\beta$-catenin signaling. Hepatology 57, 2287-2298.   DOI   ScienceOn
20 Yang, M. H., Laurent, G., Bause, A. S., Spang, R., German, N., Haigis, M. C. and Haigis, K. M. (2013) HDAC6 and SIRT2 regulate the acetylation state and oncogenic activity of mutant K-RAS. Mol. Cancer Res. [Epub ahead of print].
21 Huang, J. Y., Hirschey, M. D., Shimazu, T., Ho, L. and Verdin, E. (2010) Mitochondrial sirtuins. Biochim. Biophys. Acta. 1804, 1645-1651.   DOI   ScienceOn
22 Kim, S. C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Kho, Y., Xiao, H., Xiao, L., Grishin, N. V., White, M., Yang, X. J. and Zhao, Y. (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell. 23, 607-618.   DOI   ScienceOn
23 Pandithage, R., Lilischkis, R., Harting, K., Wolf, A., Jedamzik, B., Luscher-Firzlaff, J., Vervoorts, J., Lasonder, E., Kremmer, E., Knoll, B. and Luscher, B. (2008) The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility. J. Cell Biol. 180, 915-929.   DOI   ScienceOn
24 Donmez, G. and Outeiro, T. F. (2013) SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol. Med. 5, 344-352.   DOI
25 Outeiro, T. F., Kontopoulos, E., Altmann, S. M., Kufareva, I., Strathearn, K. E., Amore, A. M., Volk, C. B., Maxwell, M. M., Rochet, J. C., McLean, P. J., Young, A. B., Abagyan, R., Feany, M. B., Hyman, B. T. and Kazantsev, A. G. (2007) Sirtuin 2 inhibitors rescue alpha-synuclein- mediated toxicity in models of Parkinson's disease. Science 317, 516-519.   DOI   ScienceOn
26 Narayan, N., Lee, I. H., Borenstein, R., Sun, J., Wong, R., Tong, G., Fergusson, M. M., Liu, J., Rovira, I. I., Cheng, H. L., Wang, G., Gucek, M., Lombard, D., Alt, F. , Sack, M. N., Murphy, E., Cao, L. and Finkel, T. (2013) The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature 492, 199-204.
27 Hiratsuka, M., Inoue, T., Toda, T., Kimura, N., Shirayoshi, Y., Kamitani, H., Watanabe, T., Ohama, E., Tahimic, C. G., Kurimasa, A. and Oshimura, M. (2003) Proteomicsbased identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. B BRC 309, 558-566.
28 Lai, C. C., Lin, P. M., Lin, S. F., Hsu, C. H., Lin, H. C., Hu, M. L., Hsu, C. M. and Yang, M. Y. (2013) Altered expression of SIRT gene family in head and neck squamous cell carcinoma. Tumour Biol. 34, 1847-1854.   DOI   ScienceOn
29 Inoue, T., Hiratsuka, M., Osaki, M., Yamada, H., Kishimoto, I., Yamaguchi, S., Nakano, S., Katoh, M., Ito, H. and Oshimura, M. (2007) SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene. 26, 945-957.   DOI   ScienceOn
30 Inoue, T., Hiratsuka, M., Osaki, M. and Oshimura, M. (2007) The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle 6, 1011-1018.   DOI   ScienceOn
31 Serrano, L., Martinez-Redondo, P., Marazuela-Duque, A., Vazquez, B. N., Dooley, S. J., Voigt, P., Beck, D. B., Kane-Goldsmith, N., Tong, Q., Rabanal, R. M., Fondevila, D., Munoz, P., Kruger, M., Tischfield, J. A. and Vaquero, A. (2013) The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev. 27, 639-653.   DOI   ScienceOn
32 Wilson, J. M., Le, V. Q., Zimmerman, C., Marmorstein, R. and Pillus, L. (2006) Nuclear export modulates the cytoplasmic Sir2 homologue Hst2. EMBO Rep. 7, 1247-1251.   DOI   ScienceOn
33 North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. and Verdin, E. (2003) The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell. 11, 437-444.   DOI   ScienceOn
34 Jing, E., Gesta, S. and Kahn, C. R. (2007) SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 6, 105-114.   DOI   ScienceOn
35 Wang, F., Nguyen, M., Qin, F. X. and Tong, Q. (2007) SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell. 6, 505-514.   DOI   ScienceOn
36 Jin, Y. H., Kim, Y. J., Kim, D. W., Baek, K. H., Kang, B. Y., Yeo, C. Y. and Lee, K. Y. (2008) Sirt2 interacts with 14-3-3 beta/gamma and down-regulates the activity of p53. Biochem. Biophys. Res. Commun. 368, 690-695.   DOI   ScienceOn
37 North, B. J. and Verdin, E. (2007) Mitotic regulation of SIRT2 by cyclin-dependent kinase 1-dependent phosphorylation. J. Biol. Chem. 282, 19546-19555.   DOI   ScienceOn
38 Kim, H. S., Vassilopoulos, A., Wang, R. H., Lahusen, T., Xiao, Z., Xu, X., Li, C., Veenstra, T. D., Li, B., Yu, H., Ji, J., Wang, X. W., Park, S. H., Cha, Y. I., Gius, D. and Deng, C. X. (2011) SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell. 20, 487-499.   DOI   ScienceOn
39 Jiang, W., Wang, S., Xiao, M., Lin, Y., Zhou, L., Lei, Q., Xiong, Y., Guan, K. L. and Zhao, S. (2011) Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol. Cell. 43, 33-44.   DOI   ScienceOn
40 Das, C., Lucia, M. S., Hansen, K. C. and Tyler, J. K. (2009) CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 459, 113-117.   DOI   ScienceOn
41 Baur, J. A., Ungvari, Z., Minor, R. K., Le Couteur, D. G. and de Cabo, R. (2012) Are sirtuins viable targets for improving healthspan and lifespan? Nat. Rev. Drug Discov. 11, 443-461.   DOI   ScienceOn
42 Haigis, M. C. and Sinclair, D. A. (2010) Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253-295.   DOI   ScienceOn
43 Lee, S. H. and Min, K. J. (2013) Caloric restriction and its mimetics. BMB Rep. 46, 181-187.   과학기술학회마을   DOI   ScienceOn
44 Du, J., Zhou, Y., Su, X., Yu, J. J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J. H., Choi, B. H., He, B., Chen, W., Zhang, S., Cerione, R. A., Auwerx, J., Hao, Q. and Lin, H. (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806-809.   DOI   ScienceOn
45 Jiang, H., Khan, S., Wang, Y., Charron, G., He, B., Sebastian, C., Du, J., Kim, R., Ge, E., Mostoslavsky, R., Hang, H. C., Hao, Q. and Lin, H. (2013) SIRT6 regulates TNF-$\alpha$ secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496, 110-113.   DOI   ScienceOn
46 Hall, J. A., Dominy, J. E., Lee, Y. and Puigserver, P. (2013) The sirtuin family's role in aging and age-associated pathologies. J. Clin Invest. 123, 973-979.   DOI   ScienceOn
47 Roth, M. and Chen, W. Y. (2013) Sorting out functions of sirtuins in cancer. Oncogene. Apr 22. doi: 10.1038/onc. 2013.120. [Epub ahead of print].   DOI   ScienceOn
48 Morris, B. J. (2013) Seven sirtuins for seven deadly diseases of aging. Free Radic. Biol. Med. 56, 133-171.   DOI   ScienceOn
49 Martinez-Pastor, B. and Mostoslavsky, R. (2012) Sirtuins, metabolism, and cancer. Front Pharmacol. 2012;3:22. doi: 10.3389/fphar.2012.00022. Epub 2012 Feb 21.   DOI   ScienceOn
50 Dryden, S. C., Nahhas, F. A., Nowak, J. E., Goustin, A. S. and Tainsky, M. A. (2003) Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol. Cell Biol. 23, 3173-3185.   DOI   ScienceOn
51 Moskalev, A. A., Shaposhnikov, M. V., Plyusnina, E. N., Zhavoronkov, A., Budovsky, A., Yanai, H. and Fraifeld, V. E. (2012) The role of DNA damage and repair in aging ugh the prism of Koch-like criteria. Ageing Res. Rev. 12, 661-684.
52 Hoeijmakers, J. H. (2009) DNA damage, aging, and cancer. N. Engl. J. Med. 361, 1475-1485.   DOI   ScienceOn
53 Blackburn, E. H., Greider, C. W. and Szostak, J. W. (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat. Med. 12, 1133-1138.   DOI   ScienceOn
54 Fraga, M. F. and Esteller, M. (2007) Epigenetics and aging: the targets and the marks. Trends Genet. 23, 413-418.   DOI   ScienceOn
55 Powers, E. T., Morimoto, R. I., Dillin, A., Kelly, J. W. and Balch, W. E. (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78, 959-991.   DOI   ScienceOn
56 Laplante, M. and Sabatini, D. M. (2012) mTOR signaling in growth control and disease. Cell. 149, 274-293.   DOI   ScienceOn
57 Green, D. R., Galluzzi, L. and Kroemer, G. (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333, 1109-1112.   DOI   ScienceOn
58 Campisi, J. and d'Adda di Fagagna, F. (2007) Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729-740.   DOI   ScienceOn
59 Rossi, D. J., Bryder, D., Seita, J., Nussenzweig, A., Hoeijmakers, J. and Weissman, I. L. (2007) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447, 725-729.   DOI   ScienceOn
60 Barzilai, N., Huffman, D. M., Muzumdar, R. H. and Bartke, A. (2012) The critical role of metabolic pathways in aging. Diabetes 61, 1315-1322.   DOI
61 Imai, S., Armstrong, C. M., Kaeberlein, M. and Guarente, L. (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795-800.   DOI   ScienceOn
62 Frye, R. A. (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273, 793-798.   DOI   ScienceOn
63 Park, J., Chen, Y., Tishkoff, D. X., Peng, C., Tan, M., Dai, L., Xie, Z., Zhang, Y., Zwaans, B. M., Skinner, M. E., Lombard, D. B. and Zhao, Y. (2013) SIRT5-Mediated Lysine Desuccinylation Impacts Diverse Metabolic Pathways. Mol. Cell 50, 919-930.   DOI   ScienceOn
64 Jia, G., Su, L., Singhal, S. and Liu, X. (2012) Emerging roles of SIRT6 on telomere maintenance, DNA repair, metabolism and mammalian aging. Mol. Cell Biochem. 364, 345-350.   DOI   ScienceOn
65 Jiang, H., Khan, S., Wang, Y., Charron, G., He, B., Sebastian, C., Du, J., Kim, R., Ge, E., Mostoslavsky, R., Hang, H. C., Hao, Q. and Lin, H. (2013) SIRT6 regulates TNF-$\alpha$ secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496, 110-113.   DOI   ScienceOn
66 Kaidi, A., Weinert, B. T., Choudhary, C. and Jackson, S. P. (2010) Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329, 1348-1353.   DOI   ScienceOn
67 Mostoslavsky, R., Chua, K. F., Lombard, D. B., Pang, W. W., Fischer, M. R., Gellon, L., Liu, P., Mostoslavsky, G., Franco, S., Murphy, M. M., Mills, K. D., Patel, P., Hsu, J. T., Hong, A. L., Ford, E., Cheng, H. L., Kennedy, C., Nunez, N., Bronson, R., Frendewey, D., Auerbach, W., Valenzuela, D., Karow, M., Hottiger, M. O., Hursting, S., Barrett, J. C., Guarente, L., Mulligan, R., Demple, B., Yancopoulos, G. D. and Alt, F. W. (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315-329.   DOI   ScienceOn
68 Michishita, E., McCord, R. A., Berber, E., Kioi, M., Padilla-Nash, H., Damian, M., Cheung, P., Kusumoto, R., Kawahara, T. L., Barrett, J. C., Chang, H. Y., Bohr, V. A., Ried, T., Gozani, O. and Chua, K. F. (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452, 492-496.   DOI   ScienceOn
69 Yang, B., Zwaans, B. M., Eckersdorff, M. and Lombard, D. B. (2009) The sirtuin SIRT6 deacetylates H3K56Ac in vivo to promote genomic stability. Cell Cycle. 8, 2662-2663.   DOI
70 Hanahan, D. and Weinberg, R. A. (2000) The hallmarks of cancer. Cell 100, 57-70.   DOI   ScienceOn
71 Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. and Kroemer, G. (2013) The hallmarks of aging. Cell 153, 1194-1217.   DOI   ScienceOn
72 Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674.   DOI   ScienceOn
73 Khongkow, M., Olmos, Y., Gong, C., Gomes, A. R., Monteiro, L. J., Yague, E., Cavaco, T. B., Khongkow, P., Man, E. P., Laohasinnarong, S., Koo, C. Y., Harada-Shoji, N., Tsang, J. W., Coombes, R. C., Schwer, B., Khoo, U. S. and Lam, E. W. (2013) SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer. Carcinogenesis. 34, 1476-1486.   DOI   ScienceOn
74 Ford, E., Voit, R., Liszt, G., Magin, C., Grummt, I. and Guarente, L. (2006) Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 20, 1075-1080.   DOI   ScienceOn
75 Jeong, S. M., Xiao, C., Finley, L. W., Lahusen, T., Souza, A. L., Pierce, K., Li, Y. H., Wang, X., Laurent, G., German, N. J., Xu, X., Li, C., Wang, R. H., Lee, J., Csibi, A., Cerione, R., Blenis, J., Clish, C. B., Kimmelman, A., Deng, C. X. and Haigis, M. C. (2013) SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 23, 450-463.   DOI   ScienceOn
76 Mao, Z., Hine, C., Tian, X., Van Meter, M., Au, M., Vaidya, A., Seluanov, A. and Gorbunova, V. (2011) SIRT6 promotes DNA repair under stress by activating PARP1. Science 332, 1443-1446.   DOI   ScienceOn
77 Zhong, L., D'Urso, A., Toiber, D., Sebastian, C., Henry, R. E., Vadysirisack, D. D., Guimaraes, A., Marinelli, B., Wikstrom, J. D., Nir, T., Clish, C. B., Vaitheesvaran, B., Iliopoulos, O., Kurland, I., Dor, Y., Weissleder, R., Shirihai, O. S., Ellisen, L. W., Espinosa, J. M. and Mostoslavsky, R. (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140, 280-293   DOI   ScienceOn
78 Yang, H., Yang, T., Baur, J. A., Perez, E., Matsui, T., Carmona, J. J., Lamming, D. W., Souza-Pinto, N. C., Bohr, V. A., Rosenzweig, A., de Cabo, R., Sauve, A. A. and Sinclair, D. A. (2007) Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095-1107.   DOI   ScienceOn
79 Du, J., Zhou, Y., Su, X., Yu, J. J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J. H., Choi, B. H., He, B., Chen, W., Zhang, S., Cerione, R. A., Auwerx, J., Hao, Q. and Lin, H. (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806-809.   DOI   ScienceOn
80 Nakagawa, T., Lomb, D. J., Haigis, M. C. and Guarente, L. (2009) SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137, 560-570.   DOI   ScienceOn
81 Kim, J. K., Noh, J. H., Jung, K. H., Eun, J. W., Bae, H. J., Kim, M. G., Chang, Y. G., Shen, Q., Park, W. S., Lee, J. Y., Borlak, J. and Nam, S. W. (2013) Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b. Hepatology 57, 1055-1067.   DOI   ScienceOn
82 Sebastian, C., Zwaans, B. M., Silberman, D. M., Gymrek, M., Goren, A., Zhong, L., Ram, O., Truelove, J., Guimaraes, A. R., Toiber, D., Cosentino, C., Greenson, J. K., MacDonald, A. I., McGlynn, L., Maxwell, F., Edwards, J., Giacosa, S., Guccione, E., Weissleder, R., Bernstein, B. E., Regev, A., Shiels, P. G., Lombard, D. B. and Mostoslavsky, R. (2012) The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151, 1185-1199.   DOI   ScienceOn
83 Min, L., Ji, Y., Bakiri, L., Qiu, Z., Cen, J., Chen, X., Chen, L., Scheuch, H., Zheng, H., Qin, L., Zatloukal, K., Hui, L. and Wagner, E. F. (2012) Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat. Cell Biol. 14, 1203-1211.   DOI   ScienceOn
84 Xiao, C., Wang, R. H., Lahusen, T. J., Park, O., Bertola, A., Maruyama, T., Reynolds, D., Chen, Q., Xu, X., Young, H. A., Chen, W. J., Gao, B. and Deng, C. X. (2012) Progression of chronic liver inflammation and fibrosis driven by activation of c-JUN signaling in Sirt6 mutant mice. J. Biol. Chem. 287, 41903-41913.   DOI
85 Marquardt, J. U., Fischer, K., Baus, K., Kashyap, A., Ma, S., Krupp, M., Linke, M., Teufel, A., Zechner, U., Strand, D., Thorgeirsson, S. S., Galle, P. R. and Strand, S. (2013) SIRT6 dependent genetic and epigenetic alterations are associated with poor clinical outcome in HCC patients. Hepatology doi: 10.1002/hep.26413. [Epub ahead of print].   DOI   ScienceOn
86 Bauer, I., Grozio, A., Lasiglie, D., Basile, G., Sturla, L., Magnone, M., Sociali, G., Soncini, D., Caffa, I., Poggi, A., Zoppoli, G., Cea, M., Feldmann, G., Mostoslavsky, R., Ballestrero, A., Patrone, F., Bruzzone, S. and Nencioni, A. (2012) The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses. J. Biol. Chem. 287, 40924-40937.   DOI
87 Vakhrusheva, O., Smolka, C., Gajawada, P., Kostin, S., Boettger, T., Kubin, T., Braun, T. and Bober, E. (2008) Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ. Res. 102, 703-710.   DOI   ScienceOn
88 Barber, M. F., Michishita-Kioi, E., Xi, Y., Tasselli, L., Kioi, M., Moqtaderi, Z., Tennen, RI., Paredes, S., Young, N. L., Chen, K., Struhl, K., Garcia, B. A., Gozani, O., Li, W. and Chua, K. F. (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487, 114-118
89 Yoon, I. S., Chung, J. H., Hahm, S. H., Park, M. J., Lee, Y. R., Kang, L. W., Kim, T. S., Kim, J. and Han, Y. S. (2011) Ribosomal protein S3 is phosphorylated by Cdk1/cdc2 during G2/M phase. BMB Rep. 44, 529-534.   과학기술학회마을   DOI   ScienceOn