Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.4.193

Accelerating repaired basement membrane after bevacizumab treatment on alkali-burned mouse cornea  

Lee, Koon-Ja (Department of Optometry, Eulji University)
Lee, Ji-Young (Department of Ophthalmic Optics, Suseong College)
Lee, Sung Ho (R&D center, Lumieye Genetics Co., Ltd.)
Choi, Tae Hoon (Department of Ophthalmology, Nune Eye Hospital)
Publication Information
BMB Reports / v.46, no.4, 2013 , pp. 195-200 More about this Journal
Abstract
To understand the corneal regeneration induced by bevacizumab, we investigated the structure changes of stroma and basement membrane regeneration. A Stick soaked in 0.5 N NaOH onto the mouse cornea and 2.5 mg/ml of bevacizumab was delivered into an alkali-burned cornea (2 ${\mu}l$) by subconjunctival injections at 1 hour and 4 days after injury. At 7 days after injury, basement membrane regeneration was observed by transmission electron microscope. Uneven and thin epithelial basement membrane, light density of hemidesmosomes, and edematous collagen fibril bundles are shown in the alkali-burned cornea. Injured epithelial basement membrane and hemidesmosomes and edematous collagen fibril bundles resulting from alkali-burned mouse cornea was repaired by bevacizumab treatment. This study demonstrates that bevacizumab can play an important role in wound healing in the cornea by accelerating the reestablishment of basement membrane integrity that leads to barriers for scar formation.
Keywords
Alkali-burned cornea; Basement; Bevacizumb membrane; Regeneration; Wound healing;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Meller, D., Pires, R. T., Mack, R. J., Figueiredo, F., Heiligenhaus, A., Park, W. C., Prabhasawat, P., John, T., McLeod, S. D., Steuhl, K. P. and Tseng, S. C. (2000) Amnioticmembrane transplantation for acute chemical or thermal burns. Ophthalmology 107, 980-989   DOI   ScienceOn
2 Saika, S., Kobata, S., Hashizume, N., Okada, Y. and Yamanaka, O. (1993) Epithelialbasement membrane in alkali-burned corneas in rats. Immunohistochemical study. Cornea 12, 383-390.   DOI
3 Ishizaki, M., Zhu, G., Haseba, T., Shafer, S. S. and Kao, W. W.-Y. (1993) Expression of collagen I, smooth muscle actin, and vimentin during the healing of alkali-burned and lacerated corneas. Invest. Ophthalmol. Vis. Sci. 34, 3320-3328.
4 Rosenfeld, P. J., Fung, A. E. and Puliafito, C. A. (2005) Optical coherence tomography findings after an intra-vitreal injection of bevacizumab (avastin) for macular ede-ma from central retinal vein occlusion. Ophthalmic. Surg. Lasers Imaging 36, 336-339.
5 Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. and Brown, R. A. (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell. Biol. 3, 349-363.   DOI   ScienceOn
6 Wynn, T. A. (2007) Fibrotic diseases. Review series. J. Clin. Invest. 117, 524-586.   DOI   ScienceOn
7 Roberts, A. B., Tian, F., Byfield, S. D., Stuelten, C., Ooshima, A., Saika, S. and Flanders, K. C. (2006) Smad3 is key to TGF-b-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and me-tastasis. Cytokine Growth Factor Rev. 17, 19-27.   DOI   ScienceOn
8 Oh, J. Y., Kim, M. K., Shin, M. S., Lee, H. J., Lee, J. H. and Wee, W. R. (2009) The anti-inflammatory effect of subconjunctival bevacizumab on chemically burned rat corneas. Curr. Eye Res. 34, 85-91.   DOI   ScienceOn
9 Chen, Y. T., Huang, C. W., Huang, F. C., Tseng, S. Y. and Tseng, S. H. (2006) The cleavage plane of corneal epithelial adhesion complex in traumatic recurrent corneal erosion. Mol. Vis. 12, 196-204.
10 Chandrasekher, G., Ma, X., Lallier, T. E. and Bazan, H. E. (2002) Delay of corneal epithelial wound healing and induction of keratocyte apoptosis by platelet-activating factor. Invest. Ophthalmol. Vis. Sci. 43, 1422-1428.
11 Kim, E. A., Hahn, H. G., Kim, T. U., Choi, S. Y. and Cho, S. W. (2010) Attenuation of $\beta$-amyloid-induced neuroinflammation by KHG21834 in vivo. BMB Rep. 43, 614-621.   DOI   ScienceOn
12 Wu, F., Jin, W., Feng, J.,Chen, A., Ma, Z. and Zhang, X. (2010) Propamidine decrease mitochondrial complex III activity of Botrytis cinerea. BMB Rep. 43, 614-621.   DOI   ScienceOn
13 Zieske, J. D. (2001) Extracellular matrix and wound healing. Curr. Opin. Opthalamol. 12, 237-241.   DOI   ScienceOn
14 Imanishi, J., Kamiyama, K., Iguchi, I., Kita, M., Sotozono, C. and Kinoshita, S. (2000) Growth factors: importance in wound healing and maintenance of transparency of the cornea. Prog. Retinal. Eye Res. 19, 113-129.   DOI   ScienceOn
15 Parapuram, S. K., Huh, K., Liu, S. and Leask, A. (2011) Integrin $\beta1$ is necessary for the maintenance of corneal structural integrity. Invest. Ophthalmol. Vis. Sci. 52, 7799-7806.   DOI   ScienceOn
16 Burns, F. R., Gray, R. D. and Paterson, C. A. (1990) Inhibition of alkali-induced corneal ulceration and perforation by a thiol peptide. Invest. Ophthalmol. Vis. Sci. 31, 107-114.
17 Matsubara, M., Zieske, J. D. and Fini, M. E. (1991) Mechanism of basement membrane dissolution preceding corneal ulceration. Invest. Ophthalmol. Vis. Sci. 32, 3221-3237.
18 Cintron, C., Hong, B. S. and Kublin, C. L. (1981) Quantitative analysis of collagen from normal developing corneas and corneal scars. Curr. Eye Res. 1, 1-8.   DOI
19 Saika, S., Kobata, S., Hashizume, N., Okada, Y. and Yamanaka, O. (1993) Epithelial basement membrane in alkali-burned corneas in rats. Immunohistochemical study. Cornea 12, 383-390.   DOI
20 Iwanami, H., Ishizaki, M., Fukuda, Y. and Takahashi, H. (2009) Expression of matrix metalloproteinases (MMP)-12 by myofibroblasts during alkali-burned corneal wound healing. Curr. Eye Res. 34, 207-214.   DOI   ScienceOn
21 Shimoda, M., Ishizaki, M., Saiga, T., Yamanaka, N. and Nihon, G. G. Z. (1997) Expression of matrix metalloproteinases and tissue inhibitor of metalloproteinase by myofibroblasts-morphological study on corneal wound healing. Nihon Ganka Gakkai Zasshi 101, 371-379.
22 Maruotti, N., Cantatore, F. P., Crivellato, E., Vacca, A. and Ribatti, D. (2006) Angiogenesis in rheumatoid arthritis. Histol. Histopathol. 21, 557-566.
23 Stramer, B. M., Zieske, J. D., Jung, J. C., Austin, J. S. and Fini, M. E. (2003) Molecular mechanisms controlling the fibrotic repair phenotype in cornea: implications for surgical outcomes. Invest. Ophthalmol. Vis. Sci. 44, 4237-4246.   DOI   ScienceOn
24 Lee, S. H., Leem, H. S., Jeong, S. M. and Lee, K. (2009) Bevacizumab accelerates corneal wound healing by inhibiting TGF-beta2 expression in alkali-burned mouse cornea. BMB Rep. 42, 800-805.   DOI   ScienceOn
25 Yoeruek, E., Ziemssen, F., Henke-Fahle, S., Tatar, O., Tura, A., Grisanti, S., Bartz-Schmidt, K. U. and Szurman, P. (2008) Safety, penetration and efficacy of topically applied bevacizumab: evaluation of eyedrops in corneal neovascularization after chemical burn. Acta. Ophthalmol. 86, 322-328.   DOI   ScienceOn
26 Brodovsky, S. C., McCarty, C. A., Snibson, G., Loughnan, M., Sullivan, L., Daniell, M. and Taylor, H. R. (2000) Management of alkali burns: an 11-year retrospective review. Ophthalmology 107, 1829-1835.   DOI   ScienceOn
27 Kanski, J. J. Clinical Ophthalmology. 4th ed. pp. 139-140, Oxford, Butterworth-Heinemann, 1999.
28 Saika, S., Okada, Y., Miyamoto, T., Yamanaka, O., Ohnishi, Y., Ooshima, A., Liu, C. Y., Weng, D. and Kao, W. W. (2005) Role of p38 MAP kinase in regulation of cell migration and proliferation in healing corneal epithelium. Invest. Ophthalmol. Vis. Sci. 45, 100-109.