Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.3.100

Isoleucine at position 150 of Cyt2Aa toxin from Bacillus thuringiensis plays an important role during membrane binding and oligomerization  

Pathaichindachote, Wanwarang (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency)
Rungrod, Amporn (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency)
Audtho, Mongkon (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency)
Soonsanga, Sumarin (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency)
Krittanai, Chartchai (Institute of Molecular Biosciences, Mahidol University, Salaya Campus)
Promdonkoy, Boonhiang (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency)
Publication Information
BMB Reports / v.46, no.3, 2013 , pp. 175-180 More about this Journal
Abstract
Cyt2Aa2 is a mosquito larvicidal and cytolytic toxin produced by Bacillus thuringiensis subsp. darmstadiensis. The toxin becomes inactive when isoleucine at position 150 was replaced by alanine. To investigate the functional role of this position, Ile150 was substituted with Leu, Phe, Glu and Lys. All mutant proteins were produced at high level, solubilized in carbonate buffer and yielded protease activated product similar to those of the wild type. Intrinsic fluorescence spectra analysis suggested that these mutants retain similar folding to the wild type. However, mosquito larvicidal and hemolytic activities dramatically decreased for the I150K and were completely abolished for I150A and I150F mutants. Membrane binding and oligomerization assays demonstrated that only I150E and I150L could bind and form oligomers on lipid membrane similar to that of the wild type. Our results suggest that amino acid at position 150 plays an important role during membrane binding and oligomerization of Cyt2Aa2 toxin.
Keywords
Bacillus thuringiensis; Cyt toxin; Membrane binding; Mutagenesis; Oligomerization;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Koni, P. A. and Ellar, D. J. (1994) Biochemical characterization of Bacillus thuringiensis cytolytic delta-endotoxins. Microbiology 140 (Pt 8), 1869-1880.   DOI
2 Knowles, B. H., White, P. J., Nicholls, C. N. and Ellar, D. J. (1992) A broad-spectrum cytolytic toxin from Bacillus thuringiensis var. kyushuensis. Proc. Biol. Sci. 248, 1-7.   DOI   ScienceOn
3 Promdonkoy, B., Rungrod, A., Promdonkoy, P., Pathaichindachote, W., Krittanai, C. and Panyim, S. (2008) Amino acid substitutions in alphaA and alphaC of Cyt2Aa2 alter hemolytic activity and mosquito-larvicidal specificity. J. Biotechnol. 133, 287-293.   DOI   ScienceOn
4 Promdonkoy, B. and Ellar, D. J. (2003) Investigation of the pore-forming mechanism of a cytolytic delta-endotoxin from Bacillus thuringiensis. Biochem. J. 374, 255-259.   DOI   ScienceOn
5 Knowles, B. H., Blatt, M. R., Tester, M., Horsnell, J. M., Carroll, J., Menestrina, G. and Ellar, D. J. (1989) A cytolytic delta-endotoxin from Bacillus thuringiensis var. israelensis forms cation-selective channels in planar lipid bilayers. FEBS Lett. 244, 259-262.   DOI   ScienceOn
6 Butko, P. (2003) Cytolytic toxin Cyt1A and its mechanism of membrane damage: data and hypotheses. Appl. Environ. Microbiol. 69, 2415-2422.   DOI
7 Manceva, S. D., Pusztai-Carey, M., Russo, P. S. and Butko, P. (2005) A detergent-like mechanism of action of the cytolytic toxin Cyt1A from Bacillus thuringiensis var. israelensis. Biochemistry 44, 589-597.   DOI   ScienceOn
8 Guerchicoff, A., Delecluse, A. and Rubinstein, C. P. (2001) The Bacillus thuringiensis cyt genes for hemolytic endotoxins constitute a gene family. Appl. Environ. Microbiol. 67, 1090-1096.   DOI   ScienceOn
9 Li, J., Koni, P. A. and Ellar, D. J. (1996) Structure of the mosquitocidal delta-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. J. Mol. Biol. 257, 129-152.   DOI   ScienceOn
10 Schnepf, E., Crickmore, N., Van, R. J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R. and Dean, D. H. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775-806.
11 Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van, R. J., Lereclus, D., Baum, J. and Dean, D. H. (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807-813.
12 Thiery, I., Delecluse, A., Tamayo, M. C. and Orduz, S. (1997) Identification of a gene for Cyt1A-like hemolysin from Bacillus thuringiensis subsp. medellin and expression in a crystal-negative B. thuringiensis strain. Appl. Environ. Microbiol. 63, 468-473.
13 Promdonkoy, B., Chewawiwat, N., Tanapongpipat, S., Luxananil, P. and Panyim, S. (2003) Cloning and characterization of a cytolytic and mosquito larvicidal delta-endotoxin from Bacillus thuringiensis subsp. darmstadiensis. Curr. Microbiol. 46, 94-98.   DOI
14 Cohen, S., Dym, O., Albeck, S., Ben-Dov, E., Cahan, R., Firer, M. and Zaritsky, A. (2008) High-resolution crystal structure of activated Cyt2Ba monomer from Bacillus thuringiensis subsp. israelensis. J. Mol. Biol. 380, 820-827.   DOI   ScienceOn
15 Cohen, S., Albeck, S., Ben-Dov, E., Cahan, R., Firer, M., Zaritsky, A. and Dym, O. (2011) Cyt1Aa toxin: crystal structure reveals implications for its membrane-perforating function. J. Mol. Biol. 413, 804-814.   DOI   ScienceOn
16 Promdonkoy, B. and Ellar, D. J. (2005) Structure-function relationships of a membrane pore forming toxin revealed by reversion mutagenesis. Mol. Membr. Biol. 22, 327-337.   DOI   ScienceOn
17 Finney, D. (1971) Probit Analysis, Cambridge University Press, London, UK.
18 Thomas, W. E. and Ellar, D. J. (1983) Mechanism of action of Bacillus thuringiensis var israelensis insecticidal delta-endotoxin. FEBS Lett. 154, 362-368.   DOI   ScienceOn
19 Promdonkoy, B., Pathaichindachote, W., Krittanai, C., Audtho, M., Chewawiwat, N. and Panyim, S. (2004) Trp132, Trp154, and Trp157 are essential for folding and activity of a Cyt toxin from Bacillus thuringiensis. Biochem. Biophys. Res. Commun. 317, 744-748.   DOI   ScienceOn
20 Koni, P. A. and Ellar, D. J. (1993) Cloning and characterization of a novel Bacillus thuringiensis cytolytic delta-endotoxin. J. Mol. Biol. 229, 319-327.   DOI   ScienceOn
21 Thammachat, S., Pathaichindachote, W., Krittanai, C. and Promdonkoy, B. (2008) Amino acids at N- and C-termini are required for the efficient production and folding of a cytolytic delta-endotoxin from Bacillus thuringiensis. BMB Rep. 41, 820-825.   과학기술학회마을   DOI   ScienceOn
22 Thammachat, S., Pungtanom, N., Kidsanguan, S., Pathaichindachote, W., Promdonkoy, B. and Krittanai, C. (2010) Amino acid substitution on Beta1 and alphaF of Cyt2Aa2 affects molecular interaction of protoxin. BMB Rep. 43, 427-431.   과학기술학회마을   DOI   ScienceOn
23 Gazit, E., Burshtein, N., Ellar, D. J., Sawyer, T. and Shai, Y. (1997) Bacillus thuringiensis cytolytic toxin associates specifically with its synthetic helices A and C in the membrane bound state. Implications for the assembly of oligomeric transmembrane pores. Biochemistry 36, 15546-15554.   DOI   ScienceOn
24 Promdonkoy, B. and Ellar, D. J. (2000) Membrane pore architecture of a cytolytic toxin from Bacillus thuringiensis. Biochem. J. 350(Pt 1), 275-282.   DOI
25 Gazit, E. and Shai, Y. (1993) Structural characterization, membrane interaction, and specific assembly within phospholipid membranes of hydrophobic segments from Bacillus thuringiensis var. israelensis cytolytic toxin. Biochemistry 32, 12363-12371.   DOI   ScienceOn