Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.1.001

Transcutaneous antigen delivery system  

Lee, Mi-Young (Department of Medical Biotechnology, Soonchunhyang University)
Shin, Meong-Cheol (Department of Pharmaceutical Sciences, University of Michigan)
Yang, Victor C. (Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, Tianjin Medical University)
Publication Information
BMB Reports / v.46, no.1, 2013 , pp. 17-24 More about this Journal
Abstract
Transcutaneous immunization refers to the topical application of antigens onto the epidermis. Transcutaneous immunization targeting the Langerhans cells of the skin has received much attention due to its safe, needle-free, and noninvasive antigen delivery. The skin has important immunological functions with unique roles for antigen-presenting cells such as epidermal Langerhans cells and dermal dendritic cells. In recent years, novel vaccine delivery strategies have continually been developed; however, transcutaneous immunization has not yet been fully exploited due to the penetration barrier represented by the stratum corneum, which inhibits the transport of antigens and adjuvants. Herein we review recent achievements in transcutaneous immunization, focusing on the various strategies for the enhancement of antigen delivery and vaccination efficacy.
Keywords
Antigen delivery; Epidermis; Transcutaneous immunization; Vaccine;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Karande, P., Arora, A., Pham, T. K., Stevens, D., Wojicki, A. and Mitragotri, S. (2009) Transcutaneous immunization using common chemicals. J. Control. Release 138, 134-140.   DOI   ScienceOn
2 Bos, J. D. and Meinardi, M. M. (2000) The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol. 9, 165-169.   DOI   ScienceOn
3 Brown, M. B., Traynor, M. J., Martin, G. P. and Akomeah, F. K. (2008) Transdermal drug delivery systems: skin perturbation devices. Methods Mol. Biol. 437, 119-139.   DOI   ScienceOn
4 Sieg, A. and Wascotte, V. (2009) Diagnostic and therapeutic applications of iontophoresis. J. Drug Target. 17, 690-700.   DOI   ScienceOn
5 Batheja, P., Thakur, R. and Michniak, B. (2006) Transdermal iontophoresis. Expert Opin. Drug Deliv. 3, 127-138.   DOI   ScienceOn
6 Charoo, N. A., Rahman, Z., Repka, M. A. and Murthy, S. N. (2010) Electroporation: an avenue for transdermal drug delivery. Curr. Drug Deliv. 7, 125-136.   DOI   ScienceOn
7 Chen, X., Shah, D., Kositratna, G., Manstein, D., Anderson, R. R. and Wu, M. X. (2012) Facilitation of transcutaneous drug delivery and vaccine immunization by a safe laser technology. J. Control. Release 159, 43-51.   DOI   ScienceOn
8 Naohiro, S., Yoshiki, T., Takafumi N., Hideo, H., Fukumi, F. and Masahiro T. (2000) Percutaneous peptide immunization via corneum barrier-disrupted murine skin for experimental tumor immunoprophylaxis. Proc. Natl. Acad. Sci. U.S.A. 97, 371-376.   DOI
9 Ochoa, M. T., Loncaric, A., Krutzik, S. R., Becker, T. C. and Modlin, R. L. (2008) "Dermal dendritic cells" comprise two distinct populations: CD1+ dendritic cells and CD209+ macrophages. J. Invest. Dermatol. 128, 2225-2231.   DOI   ScienceOn
10 Toebak, M. J., Gibbs, S., Bruynzeel, D. P., Scheper, R. J. and Rustemeyer, T. (2009) Dendritic cells: biology of the skin. Contact Dermatitis 60, 2-20.   DOI   ScienceOn
11 Romani, N., Clausen, B. E. and Stoitzner, P. (2010) Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol. Rev. 234, 120-141.   DOI   ScienceOn
12 Zaba, L. C., Fuentes-Duculan, J., Steinman, R. M., Krueger, J. G. and Lowes, M. A. (2007) Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. J. Clin. Invest. 117, 2517-2525.   DOI   ScienceOn
13 Nestle, F. O., Zheng, X. G., Thompson, C. B., Turka, L. A. and Nickoloff, B. J. (1993) Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. J. Immunol. 151, 6535-6545.
14 Klechevsky, E., Liu, M., Morita, R., Banchereau, R., Thompson-Snipes, L., Palucka, A. K., Ueno, H. and Banchereau, J. (2009) Understanding human myeloid dendritic cell subsets for the rational design of novel vaccines. Hum. Immunol. 70, 281-288.   DOI   ScienceOn
15 Bedoui, S., Whitney, P. G., Waithman, J., Eidsmo, L., Wakim, L., Caminschi, I., Allan, R. S., Wojtasiak, M., Shortman, K., Carbone, F. R., Brooks, A. G. and Heath, W. R. (2009) Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat. Immunol. 10, 488-495.   DOI   ScienceOn
16 Clark, R. A. (2010) Skin-resident T cells: the ups and downs of on site immunity. J. Invest. Dermatol. 130, 362-370.   DOI   ScienceOn
17 Bal, S. M., Ding, Z., van Riet, E., Jiskoot, W. and Bouwstra, J. A. (2010) Advances in transcutaneous vaccine delivery: do all ways lead to Rome? J. Control Release 148, 266-282.   DOI   ScienceOn
18 Kirschner, N. and Brandner, J. M. (2012) Barriers and more: functions of tight junction proteins in the skin. Ann. N. Y. Acad. Sci. 1257, 158-166.   DOI   ScienceOn
19 Karande, P. and Mitragotri, S. (2010) Transcutaneous immunization: an overview of advantages, disease targets, vaccines, and delivery technologies. Annu. Rev. Chem. Biomol. Eng. 1, 175-201.   DOI   ScienceOn
20 Glenn, G. M., Taylor, D. N., Li, X., Frankel, S., Montemarano, A. and Alving, C. R. (2000) Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat. Med. 6, 1403-1406.   DOI   ScienceOn
21 Valladeau, J., Ravel, O., Dezutter-Dambuyant, C., Moore, K., Kleijmeer, M., Liu, Y., Duvert-Frances, V., Vincent, C., Schmitt, D., Davoust, J., Caux, C., Lebecque, S. and Saeland, S. (2000) Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12, 71-81.   DOI   ScienceOn
22 Hirobe, S., Matsuo, K., Quan, Y. S., Kamiyama, F., Morito, H., Asada, H., Takaya, Y., Mukai, Y., Okada, N. and Nakagawa, S. (2012) Clinical study of transcutaneous vaccination using a hydrogel patch for tetanus and diphtheria. Vaccine 30, 1847-1854.   DOI   ScienceOn
23 Joshi, N., Duhan, V., Lingwal, N., Bhaskar, S. and Upadhyay, P. (2012) Adjuvant properties of thermal component of hyperthermia enhanced transdermal immunization: effect on dendritic cells. PLoS One 7, e32067.   DOI
24 Glenn, G. M., Rao, M., Matyas, G. R. and Alving, C. R. (1998) Skin immunization made possible by cholera toxin. Nature 391, 851.   DOI   ScienceOn
25 Tomoka, T-N., Erika, T., Megumi, K. and Koichi, T. (2012) Transcutaneous immunization system using a hydrotropic formulation induces a potent antigen-specific antibody response. PLoS One 7, e47980.   DOI
26 Gupta, R. K. and Siber, G. R. (1994) Comparison of adjuvant activities of aluminium phosphate, calcium phosphate and stearyl tyrosine for tetanus toxoid. Biologicals 22, 53-63.   DOI   ScienceOn
27 Beignon, A. S., Briand, J. P., Muller, S. and Partidos, C. D. (2001) Immunization onto bare skin with heat-labile enterotoxin of Escherichia coli enhances immune responses to coadministered protein and peptide antigens and protects mice against lethal toxin challenge. Immunology 102, 344-351.   DOI
28 Connell, T. D. (2007) Cholera toxin, LT-I, LT-IIa and LT-IIb: the critical role of ganglioside binding in immunomodulation by type I and type II heat-labile enterotoxins. Expert Rev. Vaccines 6, 821-834.   DOI   ScienceOn
29 Scharton-Kersten, T., Yu, Jm, Vassell, R., O'Hagan, D., Alving, C. R. and Glenn, G. M. (2000) Transcutaneous immunization with bacterial ADP-ribosylating exotoxins, subunits, and unrelated adjuvants. Infect. Immun. 68, 5306-5313.   DOI   ScienceOn
30 Olvera-Gomez, I., Hamilton, S. E., Xiao, Z., Guimaraes, C. P., Ploegh, H. L., Hogquist, K. A., Wang, L. and Jameson, S. C. (2012) Cholera toxin activates nonconventional adjuvant pathways that induce protective CD8 T-cell responses after epicutaneous vaccination. Proc. Natl. Acad. Sci. U.S.A. 109, 2072-2077.   DOI   ScienceOn
31 Wilson-Welder, J. H., Torres, M. P., Kipper, M. J., Mallapragada, S. K., Wannemuehler, M. J, and Narasimhan, B. (2009) Vaccine adjuvants: current challenges and future approaches. J. Pharm. Sci. 98, 1278-1316.   DOI   ScienceOn
32 Watabe, S., Xin, K. Q., Ihata, A., Liu, L. J., Honsho, A., Aoki, I., Hamajima, K., Wahren, B. and Okuda, K. (2001) Protection against influenza virus challenge by topical application of influenza DNA vaccine. Vaccine 19, 4434-4444.   DOI   ScienceOn
33 Vrdoljak, A., McGrath, M. G., Carey, J. B., Draper, S. J., Hill, A. V., O'Mahony, C., Crean, A. M. and Moore, A. C. (2012) Coated microneedle arrays for transcutaneous delivery of live virus vaccines. J. Control. Release 159, 34-42.   DOI   ScienceOn
34 Polat, B. E., Hart, D., Langer, R. and Blankschtein, D. (2011) Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J. Control. Release 152, 330-348.   DOI   ScienceOn
35 Peachman, K. K., Rao, M., Alving, C. R., Burge, R., Leppla, S. H., Rao, V. B. and Matyas, G. R. (2006) Correlation between lethal toxin-neutralizing antibody titers and protection from intranasal challenge with Bacillus anthracis Ames strain spores in mice after transcutaneous immunization with recombinant anthrax protective antigen. Infect. Immun. 74, 794-797.   DOI   ScienceOn
36 Wang, J., Hu, J. H., Li, F. Q., Liu, G. Z., Zhu, Q. G., Liu, J. Y., Ma, H. J., Peng, C. and Si, F. G. (2007) Strong cellular and humoral immune responses induced by transcutaneous immunization with HBsAg DNA-cationic deformable liposome complex. Exp. Dermatol. 16, 724-729.   DOI   ScienceOn
37 Partidos, C. D., Beignon, A. S., Brown, F., Kramer, E., Briand, J. P. and Muller, S. (2002) Applying peptide antigens onto bare skin: induction of humoral and cellular immune responses and potential for vaccination. J. Control. Release 85, 27-34.   DOI   ScienceOn
38 Beignon, A. S., Briand, J. P., Muller, S. and Partidos, C. D. (2002) Immunization onto bare skin with synthetic peptides: immunomodulation with a CpG-containing oligodeoxynucleotide and effective priming of influenza virus- specific CD4+ T cells. Immunology 105, 204-212.   DOI   ScienceOn
39 Caux, C., Massacrier, C., Vanbervliet, B., Dubois, B., Durand, I., Cella, M., Lanzavecchia, A. and Banchereau, J. (1997) CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony- stimulating factor plus tumor necrosis factor alpha: II. Functional analysis. Blood 90, 1458-1470.
40 Klechevsky, E., Morita, R., Liu, M., Cao, Y., Coquery, S., Thompson-Snipes, L., Briere, F., Chaussabel, D., Zurawski, G., Palucka, A. K., Reiter, Y., Banchereau, J. and Ueno, H. (2008) Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 29, 497-510.   DOI   ScienceOn
41 Dubois, B., Massacrier, C., Vanbervliet, B., Fayette, J., Brière, F., Banchereau, J. and Caux, C. (1998) Critical role of IL-12 in dendritic cell-induced differentiation of naive B lymphocytes. J. Immunol. 161, 2223-2231.
42 Sixt, M., Kanazawa, N., Selg, M., Samson, T., Roos, G., Reinhardt, D. P., Pabst, R., Lutz, M. B. and Sorokin, L. (2005) The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19-29.   DOI   ScienceOn
43 Li, N., Peng, L. H., Chen, X., Nakagawa, S. and Gao, J. Q. (2011) Transcutaneous vaccines: novel advances in technology and delivery for overcoming the barriers. Vaccine 29, 6179-6190.   DOI   ScienceOn
44 Combadiere, B. and Liard, C. (2011) Transcutaneous and intradermal vaccination. Hum. Vaccine 7, 811-827.   DOI   ScienceOn
45 Glenn, G. M., Scharton-Kersten, T., Vassell, R., Mallett, C. P., Hale, T. L. and Alving, C. R. (1998) Transcutaneous immunization with cholera toxin protects mice against lethal mucosal toxin challenge. J. Immunol. 161, 3211-3214.
46 Huang, Y., Park, Y. S., Moon, C., David, A. E., Chung, H. S. and Yang, V. C. (2010) Synthetic skin-permeable proteins enabling needleless immunization. Angew. Chem. Int. Ed. Engl. 49, 2724-2727.   DOI   ScienceOn
47 Slovin, S. F., Keding, S. J. and Ragupathi, G. (2005) Carbohydrate vaccines as immunotherapy for cancer. Immunol. Cell Biol. 83, 418-428.   DOI   ScienceOn
48 Brooks, N. A., Pouniotis, D. S., Tang, C. K., Apostolopoulos, V. and Pietersz, G. A. (2010) Cell-penetrating peptides: application in vaccine delivery. Biochim. Biophys. Acta 1805, 25-34.
49 Tarique, A. A., Kalsy, A., Arifuzzaman, M., Rollins, S. M., Charles, R. C., Leung, D. T., Harris, J. B., Larocque, R. C., Sheikh, A., Bhuiyan, M. S., Saksena, R., Clements, J. D., Calderwood, S. B., Qadri, F., Kovác, P. and Ryan, E. T. (2012) Transcutaneous immunization with a Vibrio cholerae O1 Ogawa synthetic hexasaccharide conjugate following oral whole-cell cholera vaccination boosts vibriocidal responses and induces protective immunity in mice. Clin. Vaccine Immunol. 19, 594-602.   DOI
50 Mawas, F., Peyre, M., Beignon, A. S., Frost, L., Del Giudice, G., Rappuoli, R., Muller, S., Sesardic, D. and Partidos, C. D. (2004) Successful induction of protective antibody responses against Haemophilus influenzae type b and diphtheria after transcutaneous immunization with the glycoconjugate polyribosyl ribitol phosphate-cross-reacting material 197 vaccine. J. Infect. Dis. 190, 1177-1182.   DOI   ScienceOn
51 Ouerfelli, O., Warren, J. D., Wilson, R. M. and Danishefsky, S. J. (2005) Synthetic carbohydrate-based antitumor vaccines: challenges and opportunities. Expert Rev. Vaccines 4, 677-685.   DOI   ScienceOn
52 Skountzou, I., Quan, F. S., Jacob, J., Compans, R. W. and Kang, S. M. (2006) Transcutaneous immunization with inactivated influenza virus induces protective immune responses. Vaccine 24, 6110-6119.   DOI   ScienceOn
53 El-Ghorr, A. A., Williams, R. M., Heap, C. and Norval, M. (2000) Transcutaneous immunisation with herpes simplex virus stimulates immunity in mice. FEMS Immunol. Med. Microbiol. 29, 255-261.   DOI
54 Scott, E. A., Stano, A., Gillard, M., Maio-Liu, A. C., Swartz, M. A. and Hubbell, J. A. (2012) Dendritic cell activation and T cell priming with adjuvant- and antigenloaded oxidation-sensitive polymersomes. Biomaterials 33, 6211-6219.   DOI   ScienceOn
55 Riminton, D. S., Kandasamy, R., Dravec, D., Basten, A. and Baxter, A. G. (2004) Dermal enhancement: bacterial products on intact skin induce and augment organ-specific autoimmune disease. J. Immunol. 1, 302-309.
56 Rechtsteiner, G., Warger, T., Osterloh, P., Schild, H. and Radsak, M. P. (2005) Cutting edge: priming of CTL by transcutaneous peptide immunization with imiquimod. J. Immunol. 174, 2476-2480.   DOI
57 Weldon, W. C., Zarnitsyn, V. G., Esser, E. S., Taherbhai, M. T., Koutsonanos, D. G., Vassilieva, E. V., Skountzou, I., Prausnitz, M. R. and Compans, R. W. (2012). Effect of adjuvants on responses to skin immunization by microneedles coated with influenza subunit vaccine. PLoS One 7, e41501.   DOI   ScienceOn
58 Chang, B. A., Cross, J. L., Najar, H. M. and Dutz, J. P. (2009) Topical resiquimod promotes priming of CTL to parenteral antigens. Vaccine 27, 5791-5799.   DOI   ScienceOn
59 Verthelyi, D. and Zeuner, R. A. (2003) Differential signaling by CpG DNA in DCs and B cells: not just TLR9. Trends Immunol. 24, 519-522.   DOI   ScienceOn
60 Kim, D., Kwon, H. J. and Lee, Y. (2011) Activation of Toll-like receptor 9 and production of epitope specific antibody by liposome-encapsulated CpG-DNA. BMB Rep. 44, 607-612.   과학기술학회마을   DOI   ScienceOn
61 Kim, D., Kwon, S., Ahn, C. S., Lee, Y., Choi, S. Y., Park, J., Kwon, H. Y. and Kwon, H. J. (2011) Adjuvant effect of liposome- encapsulated natural phosphodiester CpG-DNA. BMB Rep. 44, 758-763.   과학기술학회마을   DOI   ScienceOn
62 Cui, Z. and Sloat, B. R. (2006) Topical immunization onto mouse skin using a microemulsion incorporated with an anthrax protective antigen protein-encoding plasmid. Int. J. Pharm. 317, 187-191.   DOI   ScienceOn
63 Zhang, J., Shi, Z., Kong, F. K., Jex, E., Huang, Z., Watt, J. M., Van Kampen, K. R. and Tang, D. C. (2006) Topical application of Escherichia coli-vectored vaccine as a simple method for eliciting protective immunity. Infect. Immun. 74, 3607-3617.   DOI   ScienceOn
64 Mishra, D., Mishra, P. K., Dabadghao, S., Dubey, V., Nahar, M. and Jain, N. K. (2010) Comparative evaluation of hepatitis B surface antigen-loaded elastic liposomes and ethosomes for human dendritic cell uptake and immune response. Nanomedicine 6, 110-118.   DOI   ScienceOn
65 Benson, H. A. (2006) Transfersomes for transdermal drug delivery. Expert Opin. Drug Deliv. 3, 727-737.   DOI
66 Vyas, S. P., Singh, R. P., Jain, S., Mishra, V., Mahor, S., Singh, P., Gupta, P. N., Rawat, A. and Dubey, P. (2005) Non-ionic surfactant based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B. Int. J. Pharm. 296, 80-86.   DOI   ScienceOn
67 Boyer, C. and Zasadzinski, J. A. (2007) Multiple lipid compartments slow vesicle contents release in lipases and serum. ACS Nano 1, 176-182.   DOI   ScienceOn
68 Kim, Y. C., Ludovice, P. J. and Prausnitz, M. R. (2007) Transdermal delivery enhanced by magainin pore-forming peptide. J. Control. Release 122, 375-383.   DOI   ScienceOn
69 Himes, R., Lee, S., McMenigall, K. and Russell-Jones, G. (2011) The influence of molecular adjuvants in the cutaneous response to antigen after topical vaccination. Vaccine 29, 5393-5398.   DOI   ScienceOn
70 Diwan, M., Tafaghodi, M. and Samuel, J. (2002) Enhancement of immune responses by co-delivery of a CpG oligodeoxynucleotide and tetanus toxoid in biodegradable nanospheres. J. Control. Release 85, 247-262.   DOI   ScienceOn
71 Slutter, B., Bal, S. M., Ding, Z., Jiskoot, W. and Bouwstra, J. A. (2011) Adjuvant effect of cationic liposomes and CpG depends on administration route. J. Control. Release. 154, 123-130.   DOI   ScienceOn
72 Ozaki, T., Yauchi, M., Xin, K. Q., Hirahara, F. and Okuda, K. (2005) Cross-reactive protection against influenza A virus by a topically applied DNA vaccine encoding M gene with adjuvant. Viral Immunol. 18, 373-380.   DOI   ScienceOn
73 Belyakov, I. M., Hammond, S. A., Ahlers, J. D., Glenn, G. M. and Berzofsky, J. A. (2004) Transcutaneous immunization induces mucosal CTLs and protective immunity by migration of primed skin dendritic cells. J. Clin. Invest. 113, 998-1007.   DOI   ScienceOn
74 Inoue, J. and Aramaki, Y. (2007) Toll-like receptor-9 expression induced by tape-stripping triggers on effective immune response with CpG-oligodeoxynucleotides. Vaccine 25, 1007-1013.   DOI   ScienceOn
75 Hickey, D. K., Aldwell, F. E., Tan, Z. Y., Bao, S. and Beagley, K. W. (2009) Transcutaneous immunization with novel lipid-based adjuvants induces protection against gastric Helicobacter pylori infection. Vaccine. 27, 6983-6990.   DOI   ScienceOn
76 Hickey, D. K., Bao, S., Ikeda, L. T., Carey, A. J. and Beagley, K. W. (2005) Induction of anti-chlamydial mucosal immunity by transcutaneous immunization is enhanced by topical application of GM-CSF. Curr. Mol. Med. 5, 559-605.
77 Huang, C. M., Wang, C. C., Kawai, M., Barnes, S. and Elmets, C. A. (2006) Surfactant sodium lauryl sulfate enhances skin vaccination: molecular characterization via a novel technique using ultrafiltration capillaries and mass spectrometric proteomics. Mol. Cell. Proteomics 5, 523-532.   DOI