Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.5.293

Molecular characterization and immunohistochemical localization of a mitogen-activated protein kinase, Accp38b, from Apis cerana cerana  

Zhang, Liang (College of Life Sciences, Shandong Agricultural University)
Meng, Fei (College of Life Sciences, Shandong Agricultural University)
Li, Yuzhen (College of Life Sciences, Shandong Agricultural University)
Kang, Mingjiang (College of Animal Science and Technology, Shandong Agricultural University)
Guo, Xingqi (College of Life Sciences, Shandong Agricultural University)
Xu, Baohua (College of Animal Science and Technology, Shandong Agricultural University)
Publication Information
BMB Reports / v.45, no.5, 2012 , pp. 293-298 More about this Journal
Abstract
The p38 mitogen-activated protein kinase (MAPK) is involved in various processes, including stress responses, development, and differentiation. However, little information on p38 MAPK in insects is available. In this study, a p38 MAPK gene, $Accp38b$, was isolated from $Apis$ $cerana$ $cerana$ and characterized. The quantitative real-time PCR (Q-PCR) analysis revealed that $Accp38b$ was induced by multiple stressors. Notably, the expression of $Accp38b$ was relatively higher in the pupae phase than in other developmental phases. During the pupae phase, Accp38b expression was higher in the thorax than in the head and abdomen and higher in the fat body than in the muscle and midgut. Immunohistochemisty showed significant positive staining of Accp38b in sections from the brain, eyes, fat body, and midgut of $A.$ $cerana$ $cerana$. These results suggest that Accp38b may play a crucial role in stress responses and have multiple aspects function during development.
Keywords
Apis cerana cerana; Expression analysis; Immunohistochemistry; Stress response; p38 MAPK;
Citations & Related Records
연도 인용수 순위
1 Takeda, K. and Ichijo, H. (2002) Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system. Genes Cells 7, 1099-1111.   DOI   ScienceOn
2 Oliveira, C. S., Rigon, A. P., Leal, R. B. and Rossi, F. M. (2008) The activation of ERK1/2 and p38 mitogen-activated protein kinases is dynamically regulated in the developing rat visual system. Int. J. Dev. Neurosci. 26, 355-362.   DOI   ScienceOn
3 Matsukage, A., Hirose, F., Yoo, M. A. and Yamaguchi, M. (2008) The DRE/DREF transcriptional regulatory system: a master key for cell proliferation. Biochim. Biophys. Acta. 1779, 81-89.   DOI   ScienceOn
4 Park, S. Y., Kim, Y. S., Yang, D. J. and Yoo, M. A. (2004) Transcriptional regulation of the Drosophila catalase gene by the DRE/DREF system. Nucleic Acids Res. 32, 1318-1324.   DOI   ScienceOn
5 Meng, F., Kang, M., Liu, L., Luo, L., Xu, B. and Guo, X. (2011) Characterization of the TAK1 gene in Apis cerana cerana (AccTAK1) and its involvement in the regulation of tissue-specific development. BMB Rep. 44, 187-192.   DOI   ScienceOn
6 Tufail, M., Naeemullah, M., Elmogy, M., Sharma, P. N., Takeda, M. and Nakamura, C. (2010) Molecular cloning, transcriptional regulation, and differential expression profiling of vitellogenin in two wing-morphs of the brown planthopper, Nilaparvata lugens Stal (Hemiptera: Delphacidae). Insect. Mol. Biol. 19, 787-798.   DOI   ScienceOn
7 Park, J. S., Kim, Y. S., Kim, J. G., Lee, S. H., Park, S. Y., Yamaguchi, M. and Yoo, M. A. (2010) Regulation of the Drosophila p38b gene by transcription factor DREF in the adult midgut. Biochim. Biophys. Acta. 1799, 510-519.   DOI   ScienceOn
8 Ishida, M., Mitsui, T., Yamakawa, K., Sugiyama, N., Takahashi, W., Shimura, H., Endo, T., Kobayashi, T. and Arita, J. (2007) Involvement of cAMP response element-binding protein in the regulation of cell proliferation and the prolactin promoter of lactotrophs in primary culture. Am. J. Physiol. Endocrinol. Metab. 293, E1529-1537.   DOI   ScienceOn
9 Carlezon, W. A., Jr., Duman, R. S. and Nestler, E. J. (2005) The many faces of CREB. Trends. Neurosci. 28, 436-445.   DOI   ScienceOn
10 Han, Z. S., Enslen, H., Hu, X., Meng, X., Wu, I. H., Barrett, T., Davis, R. J. and Ip, Y. T. (1998) A conserved p38 mitogen- activated protein kinase pathway regulates Drosophila immunity gene expression. Mol. Cell. Biol. 18, 3527-3539.   DOI
11 Han, S. J., Choi, K. Y., Brey, P. T. and Lee, W. J. (1998) Molecular cloning and characterization of a Drosophila p38 mitogen-activated protein kinase. J. Biol. Chem. 273, 369-374.   DOI   ScienceOn
12 Cancino-Rodezno, A., Alexander, C., Villasenor, R., Pacheco, S., Porta, H., Pauchet, Y., Soberon, M., Gill, S. S. and Bravo, A. (2010) The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis. Insect. Biochem. Mol. Biol. 40, 58-63.   DOI   ScienceOn
13 Okamura, T., Shimizu, H., Nagao, T., Ueda, R. and Ishii, S. (2007) ATF-2 regulates fat metabolism in Drosophila. Mol. Biol. Cell 18, 1519-1529.   DOI   ScienceOn
14 Borders, A. S., de Almeida, L., Van Eldik, L. J. and Watterson, D. M. (2008) The $p38\alpha$ mitogen-activated protein kinase as a central nervous system drug discovery target. BMC Neurosci. 9(Suppl 2), S12.   DOI   ScienceOn
15 Ono, K. and Han, J. (2000) The p38 signal transduction pathway: activation and function. Cell Signal 12, 1-13.   DOI   ScienceOn
16 Han, J., Lee, J. D., Bibbs, L. and Ulevitch, R. J. (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808-811.   DOI
17 Zarubin, T. and Han, J. (2005) Activation and signaling of the p38 MAP kinase pathway. Cell. Res. 15, 11-18.   DOI   ScienceOn
18 An, H., Lu, X., Liu, D. and Yarbrough, W. G. (2011) LZAP inhibits p38 MAPK (p38) phosphorylation and activity by facilitating p38 association with the wild-type p53 induced phosphatase 1 (WIP1). PLoS One 6, e16427.   DOI   ScienceOn
19 Roux, P. P. and Blenis, J. (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68, 320-344.   DOI   ScienceOn
20 Gong, X., Ming, X., Deng, P. and Jiang, Y. (2010) Mechanisms regulating the nuclear translocation of p38 MAP kinase. J. Cell. Biochem. 110, 1420-1429.   DOI   ScienceOn
21 Chen, J., Xie, C., Tian, L., Hong, L., Wu, X. and Han, J. (2010) Participation of the p38 pathway in Drosophila host defense against pathogenic bacteria and fungi. Proc. Natl. Acad. Sci. U.S.A. 107, 20774-20779.   DOI   ScienceOn
22 Craig, C. R., Fink, J. L., Yagi, Y., Ip, Y. T. and Cagan, R. L. (2004) A Drosophila p38 orthologue is required for environmental stress responses. EMBO Rep. 5, 1058-1063.   DOI   ScienceOn
23 Adachi-Yamada, T., Nakamura, M., Irie, K., Tomoyasu, Y., Sano, Y., Mori, E., Goto, S., Ueno, N., Nishida, Y. and Matsumoto, K. (1999) p38 mitogen-activated protein kinase can be involved in transforming growth factor beta superfamily signal transduction in Drosophila wing morphogenesis. Mol. Cell. Biol. 19, 2322-2329.   DOI
24 Raman, M., Chen, W. and Cobb, M. H. (2007) Differential regulation and properties of MAPKs. Oncogene 26, 3100-3112.   DOI   ScienceOn
25 Davis, M. M., Primrose, D. A. and Hodgetts, R. B. (2008) A member of the p38 mitogen-activated protein kinase family is responsible for transcriptional induction of Dopa decarboxylase in the epidermis of Drosophila melanogaster during the innate immune response. Mol. Cell. Biol. 28, 4883-4895.   DOI   ScienceOn
26 Park, J. S., Kim, Y. S. and Yoo, M. A. (2009) The role of p38b MAPK in age-related modulation of intestinal stem cell proliferation and differentiation in Drosophila . Aging (Albany NY) 1, 637-651.