Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.2.102

Functional study of Villin 2 protein expressed in longissimus dorsi muscle of Korean native cattle in different growth stages  

Jin, Yong-Cheng (Department of Animal Science/Bio-resources and Development Institute Pusan National University)
Han, Jeng-A (Department of Agricultural Biotechnology, Seoul National University)
Xu, Cheng-Xiong (Department of Molecular Oncology, H Lee Moffitt Cancer Center)
Kang, Sang-Kee (Department of Agricultural Biotechnology, Seoul National University)
Kim, Sang-Hun (Department of Biology, Kyung Hee University)
Seo, Kang-Suk (Department of Biology, Kyung Hee University)
Yoon, Du-Hak (Department of Animal Science, Kyungpook National University)
Choi, Yun-Jaie (Department of Agricultural Biotechnology, Seoul National University)
Lee, Hong-Gu (Department of Animal Science/Bio-resources and Development Institute Pusan National University)
Publication Information
BMB Reports / v.45, no.2, 2012 , pp. 102-107 More about this Journal
Abstract
The aim of this study was to investigate protein profiles related to the induction of adipogenesis within the bovine longissimus dorsi muscle (BLDM) by proteomic analysis. We analyzed BLDM proteins at different growth stages to clarify the physiological mechanisms of marbled muscle development in 20 head of Korean native cattle (11 month: 10 head, 17 month: 10 head). BLDM proteins were analyzed by two-dimensional electrophoresis and image analysis. Villin 2 was specifically identified by mass spectrometry and a protein search engine. Villin 2 protein expression in BLDM decreased during the fat development stage in test steers. In a Western blot cell culture study of spontaneously immortal bovine muscle fibroblasts, the abundance of Villin 2 was shown to be down-regulated during differentiation into muscle. In 3T3-L1 mouse embryonic fibroblasts, Villin 2 was decreased during differentiation into adipocytes. The results suggest that Villin 2 may be related to the induction of transdifferentiation and adipogenesis in bovine longissimus dorsi muscle.
Keywords
Korean native steer; Marbling; Proteomics; Villin 2;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Conacci-Sorrell, M. E., Ben-Yedidia, T., Shtutman, M., Feinstein, E., Einat, P. and Ben-Ze'ev, A. (2002) Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev. 16, 2058-2072.   DOI   ScienceOn
2 Gavert, N., Conacci-Sorrell, M., Gast, D., Schneider, A., Altevogt, P., Brabletz, T. and Ben-Ze'ev, A. (2005) L1, a novel target of ${\beta}$-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J. Cell Biol. 168, 633-642.   DOI   ScienceOn
3 Ross, S. E., Hemati, N., Longo, K. A., Bennett, C. N., Lucas, P. C., Erickson, R. L. and MacDougald, O. A. (2000) Inhibition of adipogenesis by Wnt signaling. Science 289, 950-953.   DOI   ScienceOn
4 Singh, R., Artaza, J. N., Taylor, W. E., Braga, M., Yuan, X., Gonzalez-Cadavid, N. F. and Bhasin, S. (2006) Testosterone inhibits adipogenic differentiation in3T3-L1 cells: nuclear translocation of androgen receptor complex with beta-catenin and T-cell factor 4 may bypass canonical Wnt signaling to down-regulate adipogenic transcription factors. Endocrinology. 147,141-154.   DOI   ScienceOn
5 Chuan, Y. C., Pang, S. T., Cedazo-Minguez, A., Norstedt, G., Pousette, A. and Flores-Morales, A. (2006) Androgen induction of prostate cancer cell invasion is mediated by ezrin. J. Biol. Chem. 281,29938-29948.   DOI   ScienceOn
6 Chateauvieux, S., Ichante, J. L., Delorme, B., Frouin, V., Pietu, G., Langonne, A., Gallay, N., Sensebe, L., Martin, M. T., Moore, K. A. and Charbord, P. (2007) Molecular profile of mouse stromal mesenchymal stem cells. Physiol. Genomics. 29,128-138.   DOI
7 Lee, H. G., Han, J. A., Lee, K. B., Kim, E. B., Jin, Y. C., Oh, J. J., Hwang, J. H., Kang, H. S., Kim, S. H., Seo, K. S., Kang, S. K. and Choi, Y. J. (2010) Buffer Optimization for Bovine Longissimus Muscle Tissues: Proteome Analysis of Korean Native Cattle Using 2-Dimensional Gel Electrophoresis. Food Sci. Biotechnol. 19, 1107-1112.   DOI   ScienceOn
8 Jin, X., Jung, J. E., Kwak, S., Lee, J. S., Kim, T. K., Xu, C., Hong, Z., Li, Z., Kim, S. M., Pian, X., You,S., Choi,Y. J. and Kim, H. (2006) Myogenic differentiation of functional p53-and Rb-deficient immortalized and transformed bovine fibroblasts by MyoD. Mol. Cells. 21, 206-212.
9 Yonemura, S., Hirao, M., Doi, Y., Takahashi, N., Kondo, T., Tsukita, S. and Tsukita, S. (1998) Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J. Cell Biol. 140, 885-895.   DOI   ScienceOn
10 Hiscox, S. and Jiang, W. G. (1999) Ezrin regulates cell-cell and cell-matrix adhesion, a possible role with Ecadherin/ beta-catenin. J. Cell Sci.112, 3081-3090.
11 Bohling, T., Turunen, O., Jaaskelainen, J., Carpen, O., Sainio, M., Wahlstrom, T., Vaheri, A. and Haltia, M. (1996) Ezrin expression in stromal cells of capillary hemangioblastoma. An immunohistochemical survey of brain tumors. Am. J. Pathol. 148, 367-373.
12 Khanna, C., Wan, X., Bose, S., Cassaday, R., Olomu, O., Mendoza, A., Yeung, C., Gorlick, R., Hewitt, S. M. and Helman, L. J. (2004) The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat. Med. 10, 182-186.   DOI   ScienceOn
13 Yu, Y., Khan, J., Khanna, C., Helman, L., Meltzer, P. S. and Merlino, G. (2004) Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat. Med. 10, 175-181.   DOI   ScienceOn
14 Gavert, N., Ben-Shmuel, A., Lemmon, V., Brabletz, T. and Ben-Ze'ev, A. (2010) Nuclear factor-kappaB signaling and ezrin are essential for L1-mediated metastasis of colon cancer cells. J. Cell Sci. 123, 2135-2143.   DOI   ScienceOn
15 Valdman, A., Fang, X., Pang, S. T., Nilsson, B., Ekman, P. and Egevad, L. (2005) Ezrin expression in prostate cancer and benign prostatic tissue. Eur. Urol. 48, 852-857.   DOI   ScienceOn
16 Wang, L. L. (2005) Biology of osteogenic sarcoma. Cancer J. 11, 294-305.   DOI   ScienceOn
17 Perera, C. N., Chin, H. G., Duru, N. and Camarillo, I. G. (2008) Leptin-regulated gene expression in MCF-7 breast cancer cells: mechanistic insights into leptin-regulated mammary tumor growth and progression. J. Endocrinol. 199, 221-233.   DOI   ScienceOn
18 Bretscher, A., Edwards, K. and Fehon, R. G. (2002) ERM proteins and merlin: integrators at the cell cortex. Nat. Rev. Mol. Cell Biol. 3, 586-599.   DOI   ScienceOn
19 Craig, S. W. and Powell, L. D. (1980) Regulation of actin polymerization by villin, a 95,000 dalton cytoskeletal component of intestinal brush borders. Cell 22, 739-746.   DOI   ScienceOn
20 Takeuchi, K., Kawashima, A., Nagafuchi, A. and Tsukita, S. (1994) Structural diversity of band 4.1 superfamily members. J. Cell Sci. 107,1921-1928.
21 Brown, K. L., Birkenhead, D., Lai, J. C., Li, L., Li, R. and Johnson, P. (2005) Regulation of hyaluronan binding by F-actin and colocalization of CD44 and phosphorylated ezrin/radixin/ moesin (ERM) proteins in myeloid cells. Exp. Cell Res. 303, 400-414.   DOI   ScienceOn
22 Elliott, B. E., Meens, J. A., SenGupta, S. K., Louvard, D. and Arpin, M. (2005) The membrane cytoskeletal crosslinker ezrin is required for metastasis of breast carcinoma cells. Breast Cancer Res. 7, 365-373.   DOI   ScienceOn
23 Tsukita, S., Yonemura, S. and Tsukita, S. (1997) ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction. Curr. Opin. Cell Biol. 9, 70-75.   DOI   ScienceOn
24 Heiska, L., Alfthan, K., Gronholm, M., Vilja, P., Vaheri, A. and Carpen, O. (1998) Association of ezrin with intercellular adhesion molecule-1 and-2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4, 5-bisphosphate. J. Biol. Chem. 273, 21893-21900.   DOI   ScienceOn
25 Hirao, M., Sato, N., Kondo, T., Yonemura, S., Monden, M., Sasaki, T., Takai, Y., Tsukita, S. and Tsukita, S. (1996) Regulation mechanism of ERM/plasma membrane association: possible involvement of phosphatidylinositol turnover and rho-dependent signalling pathway. J. Cell Biol. 135, 37-52.   DOI   ScienceOn
26 Legg, J. W. and Isacke, C. M. (1998) Identification and functional analysis of the ezrin-binding site in the hyaluronan receptor, CD44. Curr. Biol. 8, 705-708.   DOI   ScienceOn
27 Du, M., Tong, J., Zhao, J. F., Zhao, J., Underwood, K. R., Zhu, M., Ford, S. P. and Nathanielsz, P. W. (2010) Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci. 88. E51-60.   DOI
28 Gang, E. J., Jeong, J. A., Hong, S. H., Hwang, S. H., Kim, S. W., Yang, I. H., Ahn, C., Han, H. and Kim, H. (2004) Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells. 22, 617-624.
29 Gang, E. J., Bosnakovski, D., Simsek, T., To, K. and Perlingeiro, R. C. (2008) Pax3 activation promotes the differentiation of mesenchymal stem cells toward the myogenic lineage. Exp. Cell Res. 314,1721-1733.   DOI   ScienceOn
30 Grefte, S., Kuijpers-Jagtman, A. M., Torensma, R. and Von den Hoff, J. W. (2007) Skeletal muscle development and regeneration. Stem Cells Dev. 16, 857-868.   DOI   ScienceOn
31 Puente, L. G., Carriere, J. F., Kelly, J. F. and Megeney, L. A. (2004) Comparative analysis of phosphoprotein-enriched myocyte proteomes reveals widespread alterations during differentiation. FEBS Lett. 574, 138-144.   DOI   ScienceOn
32 Liu, Y., Yan, X., Sun, Z., Chen, B., Han, Q., Li, J. and Zhao, R. C. (2007) Flk-1+ adipose-derived mesenchymal stem cells differentiate into skeletal muscle satellite cells and ameliorate muscular dystrophy in mdx mice. Stem Cells Dev. 16, 695-706.   DOI   ScienceOn
33 Rosen, E. D. and MacDougald, O. A. (2006) Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell. Biol. 7, 885-896.   DOI   ScienceOn
34 Du, M., Yin, J. and Zhu, M. J. (2010) Cellular signaling pathways regulating the initial stage of adipogenesis and marbling of skeletal muscle. Meat Sci. 86, 103-109.   DOI   ScienceOn
35 Kasper, M., Hofer, D., Woodcock-Mitchell, J., Migheli, A., Attanasio, A., Rudolf, T., Muller, M. and Drenckhahn, D. (1994) Colocalization of cytokeratin 18 and villin in type III alveolar cells (brush cells) of the rat lung. Histochemistry. 101, 57-62.   DOI   ScienceOn
36 Toyoshima, K., Seta, Y., Takeda, S. and Harada, H. (1998) Identification of Merkel cells by an antibody to villin. J. Histochem. Cytochem. 46,1329-1334.   DOI   ScienceOn
37 Farmer, S. R. (2006) Transcriptional control of adipocyte formation. Cell Metab. 4, 263-273.   DOI   ScienceOn
38 Harper, G. S. and Pethick, D. W. (2004) How might marbling begin? Aust. J. Exp. Ag. 44, 653-662.   DOI   ScienceOn
39 Hausman, G. J., Dodson, M. V., Ajuwon, K., Azain, M., Barnes, K. M., Guan, L. L., Jiang, Z., Poulos, S. P., Sainz, R. D., Smith, S., Spurlock, M., Novakofski, J., Fernyhough, M. E. and Bergen, W. G. (2009) Board-invited review: The biology and regulation of preadipocytes and adipocytes in meat animals. J. Anim. Sci. 87, 1218-1246.   DOI   ScienceOn
40 Smith, S. B., Kawachi, H., Choi, C. B., Choi, C. W., Wu, G. and Sawyer, J. E. (2009) Cellular regulation of bovine intramuscular adipose tissue development and composition. J. Anim. Sci. 87(14 Suppl), E72-E82.   DOI   ScienceOn