Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.12.164

HER2 induces expression of leptin in human breast epithelial cells  

Cha, Yujin (College of Pharmacy, Duksung Women's University)
Kang, Youjin (College of Pharmacy, Duksung Women's University)
Moon, Aree (College of Pharmacy, Duksung Women's University)
Publication Information
BMB Reports / v.45, no.12, 2012 , pp. 719-723 More about this Journal
Abstract
A close association between the obesity hormone leptin and breast cancer progression has been suggested. The present study investigated the molecular mechanism for enhanced leptin expression in breast cancer cells and its functional significance in breast cancer aggressiveness. We examined whether leptin expression level is affected by the oncoprotein human epidermal growth factor receptor2 (HER2), which is overexpressed in ~30% of breast tumors. Here, we report, for the first time, that HER2 induces transcriptional activation of leptin in MCF10A human breast epithelial cells. We also showed that p38 mitogen-activated protein kinase signaling was involved in leptin expression induced by HER2. We showed a crucial role of leptin in the invasiveness of HER2-MCF10A cells using an siRNA molecule targeting leptin. Taken together, the results indicate a molecular link between HER2 and leptin, providing supporting evidence that leptin represents a target for breast cancer therapy.
Keywords
Breast cancer; ErBb2; HER2; Leptin;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J. and Thun, M. J. (2007) Cancer statistics, 2007. CA Cancer J. Clin. 57, 43-66.   DOI   ScienceOn
2 Stetler-Stevenson, W. G. (1999) Matrix metalloproteinases in angiogenesis: a movingtarget for therapeutic intervention, J. Clin. Invest. 103, 1237-1241   DOI   ScienceOn
3 Kim, M. S., Lee, E. J., Choi Kim, H. R. and Moon, A. (2003) p38 kinase is a key signaling molecule for H-ras-induced cell motility and invasive phenotype in human breast epithelial cell. Cancer Res. 63, 5454-5461.
4 Song, H., Ki, S. H., Kim, S. G. and Moon, A. (2006) Activating transcription factor 2 mediates matrix metalloproteinase- 2 transcriptional activation induced by p38 in breast epithelial cells. Cancer Res. 66, 10487-10496.   DOI   ScienceOn
5 Kim, E. S., Kim, J. S., Kim, S. G., Hwang, S., Lee, C. H. and Moon, A. (2011) Sphingosine 1-phosphate regulates matrix metalloproteinase-9 expression and breast cell invasion through S1P3-G${\alpha}$q coupling. J. Cell Sci. 124, 2220-2230.   DOI   ScienceOn
6 Garofalo, C., Koda, M., Cascio, S., Sulkowska, M., Kanczuga-Koda, L., Golaszewska, J., Russo, A., Sulkowski, S. and Surmacz, E. (2006) Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: possible role of obesity-related stimuli. Clin. Cancer Res. 12, 1447-1453.   DOI   ScienceOn
7 Porter, G. A., Inglis, K. M., Wood, L. A. and Veugelers, P. J. (2006) Effect of obesity on presentation of breast cancer. Ann. Surg. Oncol. 13, 327-332.   DOI
8 Garofalo, C. and Surmacz, E. (2006) Leptin and cancer. J. Cell Physiol. 207, 12-22.   DOI   ScienceOn
9 Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L. and Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425-432.   DOI   ScienceOn
10 Schwartz, M. W., Baskin, D. G., Kaiyala, K. J. and Woods, S. C. (1999) Model for the regulation of energy balance and adiposity by the central nervous system 1-3. Am. J. Clin. Nut. 69, 584-596.   DOI
11 Vona-Davis, L., Howard-McNatt, M. and Rose, D. P. (2007) Adiposity, type 2 diabetes and the metabolic syndrome in breast cancer. Obes. Rev. 8, 395-408.   DOI   ScienceOn
12 Schaffler, A., Scholmerich, J., and Buechler, C. (2007) Mechanisms of disease: adipokines and breast cancer - endocrine and paracrine mechanisms that connect adiposity and breast cancer. Nat. Clin. Pract. Endocrinol. Metab. 3, 345-354.   DOI   ScienceOn
13 Ishikawa, M., Kitayama, J. and Nagawa, H. (2004) Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. Clin. Cancer Res. 10, 4325-4331.   DOI   ScienceOn
14 Gambino, Y. P., Perez Perez, A., Duenas, J. L., Calvo, J. C., Sanchez-Margalet, V. and Varone, C. L. (2012) Regulation of leptin expression by 17beta-estradiol in human placental cells involves membrane associated estrogen receptor alpha. Biochim. Biophys. Acta. 1823, 900-910.   DOI   ScienceOn
15 Kim, I. Y., Yong, H. Y., Kang, K. W. and Moon, A. (2009) Overexpression of ErbB2 induces invasion of MCF10A human breast epithelial cells via MMP-9. Cancer Letters 275, 227-233.   DOI   ScienceOn
16 Cascio, S., Bartella, V., Auriemma, A., Johannes, G. J., Russo, A., Giordano, A. and Surmacz, E. (2008) Mechanism of leptin expression in breast cancer cells: role of hypoxia- inducible factor-1alpha. Oncogene. 27, 540-547.   DOI   ScienceOn
17 Slamon, D. J., Clark, G. M., Wong, S. G. Levin, W. J. Ullrich, A. and McGuire, W. L. (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177-182.   DOI   ScienceOn
18 Yarden, Y. (2001) Biology of HER2 and its importance in breast cancer. Oncology 61, 1-13.
19 Ray, A., Nkhata, K. J. and Cleary, M. P. (2007) Effects of leptin on human breast cancer cell lines in relationship to estrogen receptor and HER2 status. Int. J. Oncol. 30, 1499-1509.
20 Park, Y. J., Lee, H., and Lee, J. H. (2010) Macrophage inhibitory cytokine-1 transactivates ErbB family receptors via the activation of Src in SK-BR-3 human breast cancer cells. BMB Rep. 43, 91-96.   DOI   ScienceOn
21 Cuenda, A., Rouse, J., Doza, Y. N., Meier, R., Cohen, P., Gallagher, T. F., Young, P. R. and Lee, J. C. (1995) SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 364, 229-233.   DOI   ScienceOn
22 Gambino, Y. P., Maymo, J. L., Perez-Perez, A., Duenas, J. L., Sanchez-Margalet, V., Calvo, J. C. and Varone, C. L. (2010) 17Beta-estradiol enhances leptin expression in human placental cells through genomic and nongenomic actions. Biol Reprod. 83, 42-51.   DOI   ScienceOn
23 Surmacz, E. (2007) Obesity hormone leptin: a new target in breast cancer? Breast Cancer Res. 9, 301.   DOI
24 Moon, A., Kim, M. S., Kim, T. G., Kim, S. H., Kim, H. E., Chen, Y. Q. and Choi Kim, H. R. (2000) H-ras but not N-ras induces an invasive phenotype in human breast epithelial cells: a role for MMP-2 in the H-ras-induced invasive phenotype. Int. J. Cancer 85, 176-181.   DOI
25 Saxena, N. K., Taliaferro-Smith, L., Knight, B. B., Merlin, D., Anania, F. A., O'Regan, R. M. and Sharma, D. (2008) Bidirectional crosstalk between leptin and insulin-like growth factor-I signaling promotes invasion and migration of breast cancer cells via transactivation of epidermal growth factor receptor. Cancer Res. 68, 9712-9722.   DOI   ScienceOn
26 Schram, K., Ganguly, R., No, E. K., Fang, X., Thong, F. S. and Sweeney, G. (2011) Regulation of MT1-MMP and MMP-2 by leptin in cardiac fibroblasts involves Rho/ ㅌROCK-dependent actin cytoskeletal reorganization and leads to enhanced cell migration. Endocrinology 152, 2037-2047.   DOI   ScienceOn
27 Lee, M. P., Madani, S., Sekula, D. and Sweeney, G. (2005) Leptin increases expression and activity of matrix metalloproteinase- 2 and does not alter collagen production in rat glomerular mesangial cells. Endocr. Res. 31, 27-37.   DOI   ScienceOn
28 Kim, M. S., Lee, E. J., Choi Kim, H. R. and Moon, A. (2003) p38 kinase is a key signaling molecule for H-ras-induced cell motility and invasive phenotype in human breast epithelial cell. Cancer Res. 63, 5454-5461.
29 Zhang, C., Li, Y., Shi, X. and Kim, S. K. (2010) Inhibition of the expression on MMP-2, 9 and morphological changes via human fibrosarcoma cell line by 6,6'-bieckol from marine alga Ecklonia cava. BMB Rep. 43, 62-68.   DOI   ScienceOn