Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.11.261

Shotgun analysis on the peritrophic membrane of the silkworm Bombyx mori  

Zhong, Xiaowu (State Key Laboratory of Silkworm Genome Biology, Southwest University)
Zhang, Liping (State Key Laboratory of Silkworm Genome Biology, Southwest University)
Zou, Yong (State Key Laboratory of Silkworm Genome Biology, Southwest University)
Yi, Qiying (State Key Laboratory of Silkworm Genome Biology, Southwest University)
Zhao, Ping (State Key Laboratory of Silkworm Genome Biology, Southwest University)
Xia, Qingyou (State Key Laboratory of Silkworm Genome Biology, Southwest University)
Xiang, Zhonghuai (State Key Laboratory of Silkworm Genome Biology, Southwest University)
Publication Information
BMB Reports / v.45, no.11, 2012 , pp. 665-670 More about this Journal
Abstract
The insect midgut epithelium is generally lined with a unique chitin and protein structure, the peritrophic membrane (PM), which facilitates food digestion and protects the gut epithelium. We used gel electrophoresis and mass spectrometry to identify the extracted proteins from the silkworm PM to obtain an in-depth understanding of the biological function of the silkworm PM components. A total of 305 proteins, with molecular weights ranging from 8.02 kDa to 788.52 kDa and the isoelectric points ranging from 3.39 to 12.91, were successfully identified. We also found several major classes of PM proteins, i.e. PM chitin-binding protein, invertebrate intestinal mucin, and chitin deacetylase. The protein profile provides a basis for further study of the physiological events in the PM of Bombyx mori.
Keywords
Bombyx mori; Chitin-binding proteins; LTQ-Orbitrap; Peritrophic matrix; Proteome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lyonet, P. (1762) Trait'e Anatomique de la Chenille qui ronge le bois de Saule. Gosse and Pinet, La Haye, Holland.
2 Balbiani, E. G. (1980) Etudes anatomiques et histologiques sur le tube digestif des Crytops. Arch. Zool. Exp. Gen. 8, 1-82.
3 Wang, P. and Granados, R. R. (2001) Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control. Arch. Insect. Biochem. Physiol. 47, 110-118.   DOI   ScienceOn
4 Sudha, P. M. and Muthu, S. P. (1988) Damage to the midgut epithelium caused by food in the absence of peritrophic membrane. Curr. Sci. 57, 624-625.
5 Elvin, C. M., Vuocolo, T., Pearson, R. D., East, I. J., Riding, G. A., Eisemann, C. H. and Tellam, R. L. (1996) Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina. cDNA and deduced amino acid sequences. J. Biol. Chem. 271, 8925-8935.   DOI   ScienceOn
6 Schorderet, S., Pearson, R. D., Vuocolo, T., Eisemann, C., Riding, G. A. and Tellam, R. L. (1998) cDNA and deduced amino acid sequences of a peritrophic membrane glycoprotein, 'peritrophin-48', from the larvae of Lucilia cuprina. Insect. Biochem. Mol. Biol. 28, 99-111.   DOI   ScienceOn
7 Wang, P. and Granados, R. R. (1997) An intestinal mucin is the target substrate for a baculovirus enhancin. Proc. Natl. Acad. Sci. U.S.A. 94, 6977-6982.   DOI
8 Ferreira, A. H., Cristofoletti, P. T., Lorenzini, D. M., Guerra, L. O., Paiva, P. B., Briones, M. R., Terra, W. R. and Ferreira, C. (2007) Identification of midgut microvillar proteins from Tenebrio molitor and Spodoptera frugiperda by cDNA library screenings with antibodies. J. Insect. Physiol. 53, 1112-1124.   DOI   ScienceOn
9 Jakubowska, A. K., Caccia, S., Gordon, K. H., Ferre, J. and Herrero, S. (2010) Downregulation of a chitin deacetylase- like protein in response to baculovirus infection and its application for improving baculovirus infectivity. J. Virol. 84, 2547-2555.   DOI   ScienceOn
10 Ramos, A., Mahowald, A. and Jacobs-Lorena, M. (1994) Peritrophic matrix of the black fly Simulium vittatum: formation, structure, and analysis of its protein components. J. Exp. Zool. 268, 269-281.   DOI   ScienceOn
11 Dinglasan, R. R., Devenport, M., Florens, L., Johnson, J. R., McHugh, C. A., Donnelly-Doman, M., Carucci, D. J., Yates, J. R. 3rd and Jacobs-Lorena, M. (2009) The Anopheles gambiae adult midgut peritrophic matrix proteome. Insect Biochem. Mol. Biol. 39, 125-134.   DOI   ScienceOn
12 Lehane, M. J., Allingham, P. G. and Weglicki, P. (1996) Composition of the peritrophic matrix of the tsetse fly, Glossina morsitans morsitans. Cell Tissue Res. 283, 375-384.   DOI
13 Moskalyk, L. A., Oo, M. M. and Jacobs-Lorena, M. (1996) Peritrophic matrix proteins of Anopheles gambiae and Aedes aegypti. Insect Mol. Biol. 5, 261-268.   DOI   ScienceOn
14 Campbell, P. M., Cao, A. T., Hines, E. R., East, P. D. and Gordon, K. H. (2008) Proteomic analysis of the peritrophic matrix from the gut of the caterpillar, Helicoverpa armigera. Insect Biochem. Mol. Biol. 38, 950-958.   DOI   ScienceOn
15 Wang, P., Li, G. and Granados, R. R. (2004) Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: structural characteristics and their functions in the protease rich insect gut. Insect Biochem. Mol. Biol. 34, 215-227.   DOI   ScienceOn
16 Tellam, R. L., Wijffels, G. and Willadsen, P. (1999) Peritrophic matrix proteins. Insect Biochem. Mol. Biol. 29, 87-101.   DOI   ScienceOn
17 Luschnig, S., Batz, T., Armbruster, K. and Krasnow, M. A. (2006) serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Curr. Biol. 16, 186-194.   DOI   ScienceOn
18 Yaoi, K., Kadotani, T., Kuwana, H., Shinkawa, A., Takahashi, T., Iwahana, H. and Sato, R. (1997) Aminopeptidase N from Bombyx mori as a candidate for the receptor of Bacillus thuringiensis Cry1Aa toxin. Eur. J. Biochem. 246, 652-657.   DOI   ScienceOn
19 Nagamatsu, Y., Koike, T., Sasaki, K., Yoshimoto, A. and Furukawa, Y. (1999) The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CryIAa toxin. FEBS Lett. 460, 385-390.   DOI   ScienceOn
20 Vadlamudi, R. K., Ji, T. H. and Bulla, L. A. Jr. (1993) A specific binding protein from Manaduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. berliner. J. Biol. Chem. 268, 12334-12340.
21 Jurat-Fuentes, J. L. and Adang, M. J. (2004) Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. Eur. J. Biochem. 271, 3127-3135.   DOI   ScienceOn
22 McNall, R. J. and Adang, M. J. (2003) Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis. Insect. Biochem. Mol. Biol. 33, 999-1010.   DOI   ScienceOn
23 Fernandez, L. E., Aimanova, K. G., Gill, S. S., Bravo, A. and Soberon, M. (2006) A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae. Biochem. J. 394, 77-84.   DOI   ScienceOn
24 Pardo-Lopez, L., Munoz-Garay, C., Porta, H., Rodriguez- Almazan, C., Soberon, M. and Bravo, A. (2009) Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis. Peptides 30, 589-595.   DOI   ScienceOn
25 Mauchamp, B., Royer, C., Garel, A., Jalabert, A., Da Rocha, M., Grenier, A. M., Labas, V., Vinh, J., Mita, K., Kadono, K. and Chavancy, G. (2006) Polycalin (chlorophyllid A binding protein): a novel, very large fluorescent lipocalin from the midgut of the domestic silkworm Bombyx mori L. Insect. Biochem. Mol. Biol. 36, 623-633.   DOI   ScienceOn
26 Lee, W. J., Lee, J. D., Kravchenko, V. V., Ulevitch, R. J. and Brey, P. T. (1996) Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc. Natl. Acad. Sci. U.S.A. 93, 7888-7893.   DOI   ScienceOn
27 Pandian, G. N., Ishikawa, T., Togashi, M., Shitomi, Y., Haginoya, K., Yamamoto, S., Nishiumi, T. and Hori, H. (2008) Bombyx mori midgut membrane protein P252, which binds to Bacillus thuringiensis Cry1A, is a chlorophyllide- binding protein, and the resulting complex has antimicrobial activity. Appl. Environ. Microbiol. 74, 1324-1331.   DOI   ScienceOn
28 Zhao, P., Wang, G. H., Dong, Z. M., Duan, J., Xu, P. Z., Cheng, T. C., Xiang, Z. H. and Xia, Q. Y. (2010) Genome-wide identification and expression analysis of serine proteases and homologs in the silkworm Bombyx mori. BMC Genomics. 11, 405.   DOI   ScienceOn
29 Ponnuvel, K. M., Nakazawa, H., Furukawa, S., Asaoka, A., Ishibashi, J., Tanaka, H. and Yamakawa, M. (2003) A lipase isolated from the silkworm Bombyx mori shows antiviral activity against nucleopolyhedrovirus. J. Virol. 77, 10725-10729.   DOI
30 Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.   DOI   ScienceOn
31 Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. and Mann, M. (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856-2860.
32 Reidegeld, K. A., Eisenacher, M., Kohl, M., Chamrad, D., Korting, G., Bluggel, M., Meyer, H. E. and Stephan, C. (2008) An easy-to-use decoy database builder software tool, implementing different decoy strategies for false discovery rate calculation in automated MS/MS protein identifications. Proteomics 8, 1129-1137.   DOI   ScienceOn
33 Ye, J., Fang, L., Zheng, H., Zhang, Y., Chen, J., Zhang, Z., Wang, J., Li, S., Li, R. and Bolund, L. (2006) WEGO: a web tool for plotting GO annotations. Nucleic. Acids. Res. 34, W293-297.   DOI   ScienceOn