Shotgun analysis on the peritrophic membrane of the silkworm Bombyx mori |
Zhong, Xiaowu
(State Key Laboratory of Silkworm Genome Biology, Southwest University)
Zhang, Liping (State Key Laboratory of Silkworm Genome Biology, Southwest University) Zou, Yong (State Key Laboratory of Silkworm Genome Biology, Southwest University) Yi, Qiying (State Key Laboratory of Silkworm Genome Biology, Southwest University) Zhao, Ping (State Key Laboratory of Silkworm Genome Biology, Southwest University) Xia, Qingyou (State Key Laboratory of Silkworm Genome Biology, Southwest University) Xiang, Zhonghuai (State Key Laboratory of Silkworm Genome Biology, Southwest University) |
1 | Lyonet, P. (1762) Trait'e Anatomique de la Chenille qui ronge le bois de Saule. Gosse and Pinet, La Haye, Holland. |
2 | Balbiani, E. G. (1980) Etudes anatomiques et histologiques sur le tube digestif des Crytops. Arch. Zool. Exp. Gen. 8, 1-82. |
3 | Wang, P. and Granados, R. R. (2001) Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control. Arch. Insect. Biochem. Physiol. 47, 110-118. DOI ScienceOn |
4 | Sudha, P. M. and Muthu, S. P. (1988) Damage to the midgut epithelium caused by food in the absence of peritrophic membrane. Curr. Sci. 57, 624-625. |
5 | Elvin, C. M., Vuocolo, T., Pearson, R. D., East, I. J., Riding, G. A., Eisemann, C. H. and Tellam, R. L. (1996) Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina. cDNA and deduced amino acid sequences. J. Biol. Chem. 271, 8925-8935. DOI ScienceOn |
6 | Schorderet, S., Pearson, R. D., Vuocolo, T., Eisemann, C., Riding, G. A. and Tellam, R. L. (1998) cDNA and deduced amino acid sequences of a peritrophic membrane glycoprotein, 'peritrophin-48', from the larvae of Lucilia cuprina. Insect. Biochem. Mol. Biol. 28, 99-111. DOI ScienceOn |
7 | Wang, P. and Granados, R. R. (1997) An intestinal mucin is the target substrate for a baculovirus enhancin. Proc. Natl. Acad. Sci. U.S.A. 94, 6977-6982. DOI |
8 | Ferreira, A. H., Cristofoletti, P. T., Lorenzini, D. M., Guerra, L. O., Paiva, P. B., Briones, M. R., Terra, W. R. and Ferreira, C. (2007) Identification of midgut microvillar proteins from Tenebrio molitor and Spodoptera frugiperda by cDNA library screenings with antibodies. J. Insect. Physiol. 53, 1112-1124. DOI ScienceOn |
9 | Jakubowska, A. K., Caccia, S., Gordon, K. H., Ferre, J. and Herrero, S. (2010) Downregulation of a chitin deacetylase- like protein in response to baculovirus infection and its application for improving baculovirus infectivity. J. Virol. 84, 2547-2555. DOI ScienceOn |
10 | Ramos, A., Mahowald, A. and Jacobs-Lorena, M. (1994) Peritrophic matrix of the black fly Simulium vittatum: formation, structure, and analysis of its protein components. J. Exp. Zool. 268, 269-281. DOI ScienceOn |
11 | Dinglasan, R. R., Devenport, M., Florens, L., Johnson, J. R., McHugh, C. A., Donnelly-Doman, M., Carucci, D. J., Yates, J. R. 3rd and Jacobs-Lorena, M. (2009) The Anopheles gambiae adult midgut peritrophic matrix proteome. Insect Biochem. Mol. Biol. 39, 125-134. DOI ScienceOn |
12 | Lehane, M. J., Allingham, P. G. and Weglicki, P. (1996) Composition of the peritrophic matrix of the tsetse fly, Glossina morsitans morsitans. Cell Tissue Res. 283, 375-384. DOI |
13 | Moskalyk, L. A., Oo, M. M. and Jacobs-Lorena, M. (1996) Peritrophic matrix proteins of Anopheles gambiae and Aedes aegypti. Insect Mol. Biol. 5, 261-268. DOI ScienceOn |
14 | Campbell, P. M., Cao, A. T., Hines, E. R., East, P. D. and Gordon, K. H. (2008) Proteomic analysis of the peritrophic matrix from the gut of the caterpillar, Helicoverpa armigera. Insect Biochem. Mol. Biol. 38, 950-958. DOI ScienceOn |
15 | Wang, P., Li, G. and Granados, R. R. (2004) Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: structural characteristics and their functions in the protease rich insect gut. Insect Biochem. Mol. Biol. 34, 215-227. DOI ScienceOn |
16 | Tellam, R. L., Wijffels, G. and Willadsen, P. (1999) Peritrophic matrix proteins. Insect Biochem. Mol. Biol. 29, 87-101. DOI ScienceOn |
17 | Luschnig, S., Batz, T., Armbruster, K. and Krasnow, M. A. (2006) serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Curr. Biol. 16, 186-194. DOI ScienceOn |
18 | Yaoi, K., Kadotani, T., Kuwana, H., Shinkawa, A., Takahashi, T., Iwahana, H. and Sato, R. (1997) Aminopeptidase N from Bombyx mori as a candidate for the receptor of Bacillus thuringiensis Cry1Aa toxin. Eur. J. Biochem. 246, 652-657. DOI ScienceOn |
19 | Nagamatsu, Y., Koike, T., Sasaki, K., Yoshimoto, A. and Furukawa, Y. (1999) The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CryIAa toxin. FEBS Lett. 460, 385-390. DOI ScienceOn |
20 | Vadlamudi, R. K., Ji, T. H. and Bulla, L. A. Jr. (1993) A specific binding protein from Manaduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. berliner. J. Biol. Chem. 268, 12334-12340. |
21 | Jurat-Fuentes, J. L. and Adang, M. J. (2004) Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. Eur. J. Biochem. 271, 3127-3135. DOI ScienceOn |
22 | McNall, R. J. and Adang, M. J. (2003) Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis. Insect. Biochem. Mol. Biol. 33, 999-1010. DOI ScienceOn |
23 | Fernandez, L. E., Aimanova, K. G., Gill, S. S., Bravo, A. and Soberon, M. (2006) A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae. Biochem. J. 394, 77-84. DOI ScienceOn |
24 | Pardo-Lopez, L., Munoz-Garay, C., Porta, H., Rodriguez- Almazan, C., Soberon, M. and Bravo, A. (2009) Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis. Peptides 30, 589-595. DOI ScienceOn |
25 | Mauchamp, B., Royer, C., Garel, A., Jalabert, A., Da Rocha, M., Grenier, A. M., Labas, V., Vinh, J., Mita, K., Kadono, K. and Chavancy, G. (2006) Polycalin (chlorophyllid A binding protein): a novel, very large fluorescent lipocalin from the midgut of the domestic silkworm Bombyx mori L. Insect. Biochem. Mol. Biol. 36, 623-633. DOI ScienceOn |
26 | Lee, W. J., Lee, J. D., Kravchenko, V. V., Ulevitch, R. J. and Brey, P. T. (1996) Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc. Natl. Acad. Sci. U.S.A. 93, 7888-7893. DOI ScienceOn |
27 | Pandian, G. N., Ishikawa, T., Togashi, M., Shitomi, Y., Haginoya, K., Yamamoto, S., Nishiumi, T. and Hori, H. (2008) Bombyx mori midgut membrane protein P252, which binds to Bacillus thuringiensis Cry1A, is a chlorophyllide- binding protein, and the resulting complex has antimicrobial activity. Appl. Environ. Microbiol. 74, 1324-1331. DOI ScienceOn |
28 | Zhao, P., Wang, G. H., Dong, Z. M., Duan, J., Xu, P. Z., Cheng, T. C., Xiang, Z. H. and Xia, Q. Y. (2010) Genome-wide identification and expression analysis of serine proteases and homologs in the silkworm Bombyx mori. BMC Genomics. 11, 405. DOI ScienceOn |
29 | Ponnuvel, K. M., Nakazawa, H., Furukawa, S., Asaoka, A., Ishibashi, J., Tanaka, H. and Yamakawa, M. (2003) A lipase isolated from the silkworm Bombyx mori shows antiviral activity against nucleopolyhedrovirus. J. Virol. 77, 10725-10729. DOI |
30 | Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. DOI ScienceOn |
31 | Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. and Mann, M. (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856-2860. |
32 | Reidegeld, K. A., Eisenacher, M., Kohl, M., Chamrad, D., Korting, G., Bluggel, M., Meyer, H. E. and Stephan, C. (2008) An easy-to-use decoy database builder software tool, implementing different decoy strategies for false discovery rate calculation in automated MS/MS protein identifications. Proteomics 8, 1129-1137. DOI ScienceOn |
33 | Ye, J., Fang, L., Zheng, H., Zhang, Y., Chen, J., Zhang, Z., Wang, J., Li, S., Li, R. and Bolund, L. (2006) WEGO: a web tool for plotting GO annotations. Nucleic. Acids. Res. 34, W293-297. DOI ScienceOn |