Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.6.359

Polycystic kidney disease and therapeutic approaches  

Park, Eun-Young (Department of Biological Science, Sookmyung Women's University)
Woo, Yu-Mi (Department of Biological Science, Sookmyung Women's University)
Park, Jong-Hoon (Department of Biological Science, Sookmyung Women's University)
Publication Information
BMB Reports / v.44, no.6, 2011 , pp. 359-368 More about this Journal
Abstract
Polycystic kidney disease (PKD) is a common genetic disorder in which extensive epithelial-lined cysts develop in the kidneys. In previous studies, abnormalities of polycystin protein and its interacting proteins, as well as primary cilia, have been suggested to play critical roles in the development of renal cysts. However, although several therapeutic targets for PKD have been suggested, no early diagnosis or effective treatments are currently available. Current developments are active for treatment of PKD including inhibitors or antagonists of PPAR-${\gamma}$, TNF-${\alpha}$, CDK and VEGF. These drugs are potential therapeutic targets in PKD, and need to be determined about pathological functions in human PKD. It has recently been reported that the alteration of epigenetic regulation, as well as gene mutations, may affect the pathogenesis of PKD. In this review, we will discuss recent approaches to PKD therapy. It provides important information regarding potential targets for PKD.
Keywords
Drug development; Epigenetic; HDAC inhibitor; miRNA; Polycystic kidney disease;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Park, J. Y., Park, S. H. and Weiss, R. H. (2009) Disparate effects of roscovitine on renal tubular epithelial cell apoptosis and senescence: implications for autosomal dominant polycystic kidney disease. Am. J. Nephrol. 29, 509-515.   DOI   ScienceOn
2 Ibraghimov-Beskrovnaya, O. (2007) Targeting dysregulated cell cycle and apoptosis for polycystic kidney disease therapy. Cell Cycle 6, 776-779.   DOI
3 Moreno, S., Ibraghimov-Beskrovnaya, O. and Bukanov, N. O. (2008) Serum and urinary biomarker signatures for rapid preclinical in vivo assessment of CDK inhibition as a therapeutic approach for PKD. Cell Cycle 7, 1856-1864.   DOI
4 Muto, S., Aiba, A., Saito, Y., Nakao, K., Nakamura, K., Tomita, K., Kitamura, T., Kurabayashi, M., Nagai, R., Higashihara, E., Harris, P. C., Katsuki, M. and Horie, S. (2002) Pioglitazone improves the phenotype and molecular defects of a targeted Pkd1 mutant. Hum. Mol. Genet. 11, 1731-1742.   DOI   ScienceOn
5 Dai, B., Liu, Y., Mei, C., Fu, L., Xiong, X., Zhang, Y., Shen, X. and Hua, Z. (2010) Rosiglitazone attenuates development of polycystic kidney disease and prolongs survival in Han:SPRD rats. Clin. Sci. (Lond) 119, 323-333.   DOI
6 Raphael, K. L., Strait, K. A., Stricklett, P. K., Baird, B. C., Piontek, K., Germino, G. G. and Kohan, D. E. (2009) Effect of pioglitazone on survival and renal function in a mouse model of polycystic kidney disease. Am. J. Nephrol. 30, 468-473.   DOI   ScienceOn
7 Xu, N., Glockner, J. F., Rossetti, S., Babovich-Vuksanovic, D., Harris, P. C. and Torres, V. E. (2006) Autosomal dominant polycystic kidney disease coexisting with cystic fibrosis. J. Nephrol. 19, 529-534.
8 Tsankova, N., Renthal, W., Kumar, A. and Nestler, E. J. (2007) Epigenetic regulation in psychiatric disorders. Nat. Rev. Neurosci. 8, 355-367.   DOI   ScienceOn
9 Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller, B., Hayward, D. C., Ball, E. E., Degnan, B., Muller, P., Spring, J., Srinivasan, A., Fishman, M., Finnerty, J., Corbo, J., Levine, M., Leahy, P., Davidson, E. and Ruvkun, G. (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86-89.   DOI   ScienceOn
10 Filipowicz, W., Bhattacharyya, S. N. and Sonenberg, N. (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102-114.
11 Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. and Burge, C. B. (2003) Prediction of mammalian microRNA targets. Cell 115, 787-798.   DOI   ScienceOn
12 Friedman, R. C., Farh, K. K., Burge, C. B. and Bartel, D. P. (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92-105.
13 Shillingford, J. M., Murcia, N. S., Larson, C. H., Low, S. H., Hedgepeth, R., Brown, N., Flask, C. A., Novick, A. C., Goldfarb, D. A., Kramer-Zucker, A., Walz, G., Piontek, K. B., Germino, G. G. and Weimbs, T. (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl. Acad. Sci. U. S. A. 103, 5466-5471.   DOI   ScienceOn
14 Gao, X., Zhang, Y., Arrazola, P., Hino, O., Kobayashi, T., Yeung, R. S., Ru, B. and Pan, D. (2002) Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat. Cell Biol. 4, 699-704.   DOI   ScienceOn
15 Korpal, M., Lee, E. S., Hu, G. and Kang, Y. (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910-14914.   DOI   ScienceOn
16 Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B. L., Mak, R. H., Ferrando, A. A., Downing, J. R., Jacks, T., Horvitz, H. R. and Golub, T. R. (2005) MicroRNA expression profiles classify human cancers. Nature 435, 834-838.   DOI   ScienceOn
17 Bhatt, K., Mi, Q. S. and Dong, Z. (2011) microRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. Am. J. Physiol. Renal Physiol. 300, F602-610.   DOI   ScienceOn
18 Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J. J. and Natarajan, R. (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc. Natl. Acad. Sci. U. S. A. 104, 3432-3437.   DOI   ScienceOn
19 Krupa, A., Jenkins, R., Luo, D. D., Lewis, A., Phillips, A. and Fraser, D. (2010) Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J. Am. Soc. Nephrol. 21, 438-447.   DOI   ScienceOn
20 Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., Vadas, M. A., Khew-Goodall, Y. and Goodall, G. J. (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593-601.   DOI   ScienceOn
21 Bracken, C. P., Gregory, P. A., Kolesnikoff, N., Bert, A. G., Wang, J., Shannon, M. F. and Goodall, G. J. (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 68, 7846-7854.   DOI   ScienceOn
22 Takahashi, M., Takamori, H., Kasuya, M., Ogawa, Y., Sato, K., Kimura, K., Homma, Y., Hirata, Y. and Fujita, T. (2010) miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS One 5, e13614.   DOI   ScienceOn
23 Sun, Y., Koo, S., White, N., Peralta, E., Esau, C., Dean, N. M. and Perera, R. J. (2004) Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res. 32, e188.   DOI   ScienceOn
24 Liang, M., Liu, Y., Mladinov, D., Cowley, A. W., Jr., Trivedi, H., Fang, Y., Xu, X., Ding, X. and Tian, Z. (2009) MicroRNA: a new frontier in kidney and blood pressure research. Am. J. Physiol. Renal Physiol. 297, F553-558.   DOI   ScienceOn
25 Tijsterman, M. and Plasterk, R. H. (2004) Dicers at RISC; the mechanism of RNAi. Cell 117, 1-3.   DOI   ScienceOn
26 Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L. and Bradley, A. (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902-1910.   DOI   ScienceOn
27 Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, M. J., Tuschl, T. and Margalit, H. (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 33, 2697-2706.   DOI   ScienceOn
28 Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A. O., Landthaler, M., Lin, C., Socci, N. D., Hermida, L., Fulci, V., Chiaretti, S., Foa, R., Schliwka, J., Fuchs, U., Novosel, A., Muller, R. U., Schermer, B., Bissels, U., Inman, J., Phan, Q., Chien, M., Weir, D. B., Choksi, R., De Vita, G., Frezzetti, D., Trompeter, H. I., Hornung, V., Teng, G., Hartmann, G., Palkovits, M., Di Lauro, R., Wernet, P., Macino, G., Rogler, C. E., Nagle, J. W., Ju, J., Papavasiliou, F. N., Benzing, T., Lichter, P., Tam, W., Brownstein, M. J., Bosio, A., Borkhardt, A., Russo, J. J., Sander, C., Zavolan, M. and Tuschl, T. (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401-1414.   DOI   ScienceOn
29 McKinsey, T. A., Zhang, C. L. and Olson, E. N. (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem. Sci. 27, 40-47.   DOI   ScienceOn
30 Nishio, S., Hatano, M., Nagata, M., Horie, S., Koike, T., Tokuhisa, T. and Mochizuki, T. (2005) Pkd1 regulates immortalized proliferation of renal tubular epithelial cells through p53 induction and JNK activation. J. Clin. Invest. 115, 910-918.   DOI   ScienceOn
31 Leuenroth, S. J., Okuhara, D., Shotwell, J. D., Markowitz, G. S., Yu, Z., Somlo, S. and Crews, C. M. (2007) Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. Proc. Natl. Acad. Sci. U. S. A. 104, 4389-4394.   DOI   ScienceOn
32 Natoli, T. A., Smith, L. A., Rogers, K. A., Wang, B., Komarnitsky, S., Budman, Y., Belenky, A., Bukanov, N. O., Dackowski, W. R., Husson, H., Russo, R. J., Shayman, J. A., Ledbetter, S. R., Leonard, J. P. and Ibraghimov- Beskrovnaya, O. (2010) Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models. Nat. Med. 16, 788-792.   DOI   ScienceOn
33 Chatterjee, S., Shi, W. Y., Wilson, P. and Mazumdar, A. (1996) Role of lactosylceramide and MAP kinase in the proliferation of proximal tubular cells in human polycystic kidney disease. J. Lipid Res. 37, 1334-1344.
34 Yoo, C. B. and Jones, P. A. (2006) Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov. 5, 37-50.   DOI   ScienceOn
35 Mutskov, V. and Felsenfeld, G. (2004) Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9. EMBO J. 23, 138-149.   DOI   ScienceOn
36 Taplick, J., Kurtev, V., Kroboth, K., Posch, M., Lechner, T. and Seiser, C. (2001) Homo-oligomerisation and nuclear localisation of mouse histone deacetylase 1. J. Mol. Biol. 308, 27-38.   DOI   ScienceOn
37 Gardner, K. D., Jr., Burnside, J. S., Elzinga, L. W. and Locksley, R. M. (1991) Cytokines in fluids from polycystic kidneys. Kidney Int. 39, 718-724.   DOI   ScienceOn
38 Guan, Y. and Breyer, M. D. (2001) Peroxisome proliferator- activated receptors (PPARs): novel therapeutic targets in renal disease. Kidney Int. 60, 14-30.   DOI   ScienceOn
39 Liu, M., Fu, L., Liu, C., Xiong, X., Gao, X., Xiao, M., Cai, H., Hu, H., Wang, X. and Mei, C. (2010) DH9, a novel PPARgamma agonist suppresses the proliferation of ADPKD epithelial cells: An association with an inhibition of beta-catenin signaling. Invest. New Drugs 28, 783-790.   DOI
40 Balkwill, F. (2009) Tumour necrosis factor and cancer. Nat. Rev. Cancer 9, 361-371.   DOI   ScienceOn
41 Calin, G. A. and Croce, C. M. (2006) MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857-866.   DOI   ScienceOn
42 Volinia, S., Calin, G. A., Liu, C. G., Ambs, S., Cimmino, A., Petrocca, F., Visone, R., Iorio, M., Roldo, C., Ferracin, M., Prueitt, R. L., Yanaihara, N., Lanza, G., Scarpa, A., Vecchione, A., Negrini, M., Harris, C. C. and Croce, C. M. (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. U. S. A. 103, 2257-2261.   DOI   ScienceOn
43 Kato, M., Arce, L. and Natarajan, R. (2009) MicroRNAs and their role in progressive kidney diseases. Clin. J. Am. Soc. Nephrol. 4, 1255-1266.   DOI   ScienceOn
44 Saal, S. and Harvey, S. J. (2009) MicroRNAs and the kidney: coming of age. Curr. Opin. Nephrol. Hypertens 18, 317-323.   DOI   ScienceOn
45 Li, X. (2010) Epigenetics and autosomal dominant polycystic kidney disease. Biochim. Biophys. Acta. [Epub ahead of print].
46 Yamaguchi, T., Reif, G. A., Calvet, J. P. and Wallace, D. P. (2010) Sorafenib inhibits cAMP-dependent ERK activation, cell proliferation, and in vitro cyst growth of human ADPKD cyst epithelial cells. Am. J. Physiol. Renal. Physiol. 299, F944-951.   DOI   ScienceOn
47 Distefano, G., Boca, M., Rowe, I., Wodarczyk, C., Ma, L., Piontek, K. B., Germino, G. G., Pandolfi, P. P. and Boletta, A. (2009) Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol. Cell Biol. 29, 2359-2371.   DOI   ScienceOn
48 Zafar, I., Belibi, F. A., He, Z. and Edelstein, C. L. (2009) Long-term rapamycin therapy in the Han:SPRD rat model of polycystic kidney disease (PKD). Nephrol. Dial Transplant 24, 2349-2353.   DOI   ScienceOn
49 Yamaguchi, T., Hempson, S. J., Reif, G. A., Hedge, A. M. and Wallace, D. P. (2006) Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells. J. Am. Soc. Nephrol. 17, 178-187.   DOI   ScienceOn
50 Sas, K. M. (2010) Targeting B-Raf as a treatment strategy for polycystic kidney disease. Am. J Physiol. Renal. Physiol. 299, F942-943.   DOI   ScienceOn
51 Esau, C. C. and Monia, B. P. (2007) Therapeutic potential for microRNAs. Adv. Drug Deliv. Rev. 59, 101-114.   DOI   ScienceOn
52 Masyuk, A. I., Huang, B. Q., Ward, C. J., Gradilone, S. A., Banales, J. M., Masyuk, T. V., Radtke, B., Splinter, P. L. and LaRusso, N. F. (2010) Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G990-999.   DOI   ScienceOn
53 Masyuk, T., Masyuk, A. and LaRusso, N. (2009) MicroRNAs in cholangiociliopathies. Cell Cycle 8, 1324-1328.   DOI
54 Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M. and Stoffel, M. (2005) Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685-689.   DOI   ScienceOn
55 Chung, A. C., Huang, X. R., Meng, X. and Lan, H. Y. (2010) miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J. Am. Soc. Nephrol. 21, 1317-1325.   DOI   ScienceOn
56 Pandey, P., Qin, S., Ho, J., Zhou, J. and Kreidberg, J. A. (2011) Systems biology approach to identify transcriptome reprogramming and microRNA targets during the progression of Polycystic Kidney Disease. BMC. Syst. Biol. 5, 56.   DOI   ScienceOn
57 Akkina, S. and Becker, B. N. (2011) MicroRNAs in kidney function and disease. Transl. Res. 157, 236-240.
58 Razzaque, M. S., Naito, T. and Taguchi, T. (2001) Protooncogene Ets-1 and the kidney. Nephron. 89, 1-4.   DOI   ScienceOn
59 Lee, S. O., Masyuk, T., Splinter, P., Banales, J. M., Masyuk, A., Stroope, A. and Larusso, N. (2008) MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J. Clin. Invest. 118, 3714-3724.   DOI   ScienceOn
60 Tan, Y. C., Blumenfeld, J. and Rennert, H. (2011) Autosomal dominant polycystic kidney disease: Genetics, mutations and microRNAs. Biochim. Biophys. Acta. [Epub ahead of print].
61 Sun, H., Li, Q. W., Lv, X. Y., Ai, J. Z., Yang, Q. T., Duan, J. J., Bian, G. H., Xiao, Y., Wang, Y. D., Zhang, Z., Liu, Y. H., Tan, R. Z., Yang, Y., Wei, Y. Q. and Zhou, Q. (2010) MicroRNA-17 post-transcriptionally regulates polycystic kidney disease-2 gene and promotes cell proliferation. Mol. Biol. Rep. 37, 2951-2958.   DOI
62 Tran, U., Zakin, L., Schweickert, A., Agrawal, R., Doger, R., Blum, M., De Robertis, E. M. and Wessely, O. (2010) The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development 137, 1107-1116.   DOI   ScienceOn
63 Gregory, R. I., Chendrimada, T. P., Cooch, N. and Shiekhattar, R. (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631-640.   DOI   ScienceOn
64 Bieliauskas, A. V. and Pflum, M. K. (2008) Isoform-selective histone deacetylase inhibitors. Chem. Soc. Rev. 37, 1402-1413.   DOI   ScienceOn
65 Xia, S., Li, X., Johnson, T., Seidel, C., Wallace, D. P. and Li, R. (2010) Polycystin-dependent fluid flow sensing targets histone deacetylase 5 to prevent the development of renal cysts. Development 137, 1075-1084.   DOI   ScienceOn
66 Pugacheva, E. N., Jablonski, S. A., Hartman, T. R., Henske, E. P. and Golemis, E. A. (2007) HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129, 1351-1363.   DOI   ScienceOn
67 Song, X., Di Giovanni, V., He, N., Wang, K., Ingram, A., Rosenblum, N. D. and Pei, Y. (2009) Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum. Mol. Genet. 18, 2328-2343.   DOI   ScienceOn
68 Mehnert, J. M. and Kelly, W. K. (2007) Histone deacetylase inhibitors: biology and mechanism of action. Cancer J. 13, 23-29.   DOI
69 Qian, F., Watnick, T. J., Onuchic, L. F. and Germino, G. G. (1996) The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87, 979-987.   DOI   ScienceOn
70 Ambros, V., Bartel, B., Bartel, D. P., Burge, C. B., Carrington, J. C., Chen, X., Dreyfuss, G., Eddy, S. R., Griffiths-Jones, S., Marshall, M., Matzke, M., Ruvkun, G. and Tuschl, T. (2003) A uniform system for microRNA annotation. RNA 9, 277-279.   DOI
71 Kim, V. N. (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6, 376-385.   DOI   ScienceOn
72 Klagsbrun, M. and Moses, M. A. (1999) Molecular angiogenesis. Chem. Biol. 6, R217-224.   DOI   ScienceOn
73 Taunton, J., Hassig, C. A. and Schreiber, S. L. (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408-411.   DOI   ScienceOn
74 Bertos, N. R., Wang, A. H. and Yang, X. J. (2001) Class II histone deacetylases: structure, function, and regulation. Biochem. Cell Biol. 79, 243-252.   DOI   ScienceOn
75 Bello-Reuss, E., Holubec, K. and Rajaraman, S. (2001) Angiogenesis in autosomal-dominant polycystic kidney disease. Kidney Int. 60, 37-45.   DOI   ScienceOn
76 Tao, Y., Kim, J., Yin, Y., Zafar, I., Falk, S., He, Z., Faubel, S., Schrier, R. W. and Edelstein, C. L. (2007) VEGF receptor inhibition slows the progression of polycystic kidney disease. Kidney Int. 72, 1358-1366.   DOI   ScienceOn
77 Amura, C. R., Brodsky, K. S., Groff, R., Gattone, V. H., Voelkel, N. F. and Doctor, R. B. (2007) VEGF receptor inhibition blocks liver cyst growth in pkd2(WS25/-) mice. Am. J. Physiol. Cell Physiol. 293, C419-428.   DOI   ScienceOn
78 McGrath-Morrow, S., Cho, C., Molls, R., Burne-Taney, M., Haas, M., Hicklin, D. J., Tuder, R. and Rabb, H. (2006) VEGF receptor 2 blockade leads to renal cyst formation in mice. Kidney Int. 69, 1741-1748.   DOI   ScienceOn
79 Bernhardt, W. M., Wiesener, M. S., Weidemann, A., Schmitt, R., Weichert, W., Lechler, P., Campean, V., Ong, A. C., Willam, C., Gretz, N. and Eckardt, K. U. (2007) Involvement of hypoxia-inducible transcription factors in polycystic kidney disease. Am. J. Pathol. 170, 830-842.   DOI   ScienceOn
80 Deribe, Y. L., Wild, P., Chandrashaker, A., Curak, J., Schmidt, M. H., Kalaidzidis, Y., Milutinovic, N., Kratchmarova, I., Buerkle, L., Fetchko, M. J., Schmidt, P., Kittanakom, S., Brown, K. R., Jurisica, I., Blagoev, B., Zerial, M., Stagljar, I. and Dikic, I. (2009) Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Sci. Signal 2, ra84.   DOI   ScienceOn
81 Valenzuela-Fernandez, A., Cabrero, J. R., Serrador, J. M. and Sanchez-Madrid, F. (2008) HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol. 18, 291-297.   DOI   ScienceOn
82 Bali, P., Pranpat, M., Bradner, J., Balasis, M., Fiskus, W., Guo, F., Rocha, K., Kumaraswamy, S., Boyapalle, S., Atadja, P., Seto, E. and Bhalla, K. (2005) Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem. 280, 26729-26734.   DOI   ScienceOn
83 Van Bodegom, D., Saifudeen, Z., Dipp, S., Puri, S., Magenheimer, B. S., Calvet, J. P. and El-Dahr, S. S. (2006) The polycystic kidney disease-1 gene is a target for p53-mediated transcriptional repression. J. Biol. Chem. 281, 31234-31244.   DOI   ScienceOn
84 Cao, Y., Semanchik, N., Lee, S. H., Somlo, S., Barbano, P. E., Coifman, R. and Sun, Z. (2009) Chemical modifier screen identifies HDAC inhibitors as suppressors of PKD models. Proc. Natl. Acad. Sci. U. S. A. 106, 21819-21824.   DOI   ScienceOn
85 van Bodegom, D., Roessingh, W., Pridjian, A. and El Dahr, S. S. (2010) Mechanisms of p53-mediated repression of the human polycystic kidney disease-1 promoter. Biochim. Biophys. Acta. 1799, 502-509.   DOI   ScienceOn
86 Li, X., Magenheimer, B. S., Xia, S., Johnson, T., Wallace, D. P., Calvet, J. P. and Li, R. (2008) A tumor necrosis factor-alpha-mediated pathway promoting autosomal dominant polycystic kidney disease. Nat. Med. 14, 863-868.   DOI   ScienceOn
87 Gao, J., Zhou, H., Lei, T., Zhou, L., Li, W., Li, X. and Yang, B. (2011) Curcumin inhibits renal cyst formation and enlargement in vitro by regulating intracellular signaling pathways. Eur. J. Pharmacol. 654, 92-99.   DOI   ScienceOn
88 Leonhard, W. N., van der Wal, A., Novalic, Z., Kunnen, S. J., Gansevoort, R. T., Breuning, M. H., de Heer, E. and Peters, D. J. (2011) Curcumin inhibits cystogenesis by simultaneous interference of multiple signaling pathways: in vivo evidence from a Pkd1-deletion model. Am. J. Physiol. Renal Physiol. 300, F1193-1202.   DOI   ScienceOn
89 Merta, M., Tesar, V., Zima, T., Jirsa, M., Rysava, R. and Zabka, J. (1997) Cytokine profile in autosomal dominant polycystic kidney disease. Biochem. Mol. Biol. Int. 41, 619-624.
90 Pirson, Y. (2008) Does TNF-alpha enhance cystogenesis in ADPKD? Nephrol. Dial Transplant. 23, 3773-3775.   DOI   ScienceOn
91 Bukanov, N. O., Smith, L. A., Klinger, K. W., Ledbetter, S. R. and Ibraghimov-Beskrovnaya, O. (2006) Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature 444, 949-952.   DOI   ScienceOn
92 McClue, S. J., Blake, D., Clarke, R., Cowan, A., Cummings, L., Fischer, P. M., MacKenzie, M., Melville, J., Stewart, K., Wang, S., Zhelev, N., Zheleva, D. and Lane, D. P. (2002) In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202 (R-roscovitine). Int. J. Cancer 102, 463-468.   DOI   ScienceOn
93 Liu, Y., Dai, B., Fu, L., Jia, J. and Mei, C. (2010) Rosiglitazone inhibits cell proliferation by inducing G1 cell cycle arrest and apoptosis in ADPKD cyst-lining epithelia cells. Basic Clin. Pharmacol. Toxicol. 106, 523-530.   DOI   ScienceOn
94 Vasyutina, E. and Treier, M. (2010) Molecular mechanisms in renal degenerative disease. Semin. Cell Dev. Biol. 21, 831-837.   DOI   ScienceOn
95 Karolina, D. S., Wintour, E. M., Bertram, J. and Jeyaseelan, K. (2010) Riboregulators in kidney development and function. Biochimie. 92, 217-225.   DOI   ScienceOn
96 Kliewer, S. A., Lehmann, J. M., Milburn, M. V. and Willson, T. M. (1999) The PPARs and PXRs: nuclear xenobiotic receptors that define novel hormone signaling pathways. Recent Prog. Horm. Res. 54, 345-367; discussion 367-348.
97 Takiar, V., Nishio, S., Seo-Mayer, P., King, J. D., Jr., Li, H., Zhang, L., Karihaloo, A., Hallows, K. R., Somlo, S. and Caplan, M. J. (2011) Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc. Natl. Acad. Sci. U. S. A. 108, 2462-2467.   DOI   ScienceOn
98 Harris, P. C. and Torres, V. E. (2009) Polycystic kidney disease. Annu. Rev. Med. 60, 321-337.   DOI   ScienceOn
99 Taby, R. and Issa, J. P. (2010) Cancer epigenetics. CA. Cancer J. Clin. 60, 376-392.   DOI
100 Felsenfeld, G. and Groudine, M. (2003) Controlling the double helix. Nature 421, 448-453.   DOI   ScienceOn
101 Strahl, B. D. and Allis, C. D. (2000) The language of covalent histone modifications. Nature 403, 41-45.   DOI   ScienceOn
102 Nauli, S. M., Alenghat, F. J., Luo, Y., Williams, E., Vassilev, P., Li, X., Elia, A. E., Lu, W., Brown, E. M., Quinn, S. J., Ingber, D. E. and Zhou, J. (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129-137.   DOI   ScienceOn
103 Igarashi, P. and Somlo, S. (2002) Genetics and pathogenesis of polycystic kidney disease. J. Am. Soc. Nephrol. 13, 2384-2398.   DOI   ScienceOn
104 Torres, V. E. and Harris, P. C. (2009) Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int. 76, 149-168.   DOI   ScienceOn
105 Watnick, T. and Germino, G. (2003) From cilia to cyst. Nat. Genet. 34, 355-356.   DOI   ScienceOn
106 Belibi, F. A. and Edelstein, C. L. (2010) Novel targets for the treatment of autosomal dominant polycystic kidney disease. Expert. Opin. Investig. Drugs 19, 315-328.   DOI   ScienceOn