Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.5.312

Knockdown of cytosolic NADP+-dependent isocitrate dehydrogenase enhances MPP+-induced oxidative injury in PC12 cells  

Yang, Eun-Sun (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
Park, Jeen-Woo (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
Publication Information
BMB Reports / v.44, no.5, 2011 , pp. 312-316 More about this Journal
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridium ion (MPP$^+$) have been shown to induce Parkinson's disease-like symptoms as well as neurotoxicity in humans and animal species. Recently, we reported that maintenance of redox balance and cellular defense against oxidative damage are primary functions of the novel antioxidant enzyme cytosolic NADP$^+$-dependent isocitrate dehydrogenase (IDPc). In this study, we examined the role of IDPc in cellular defense against MPP$^+$-induced oxidative injury using PC12 cells transfected with IDPc small interfering RNA (siRNA). Our results demonstrate that MPP$^+$-mediated disruption of cellular redox status, oxidative damage to cells, and apoptotic cell death were significantly enhanced by knockdown of IDPc.
Keywords
Antioxidant enzyme; $MPP^+$; Parkinson's disease; Redox status; SiRNA;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Orrenius, S., Gogradze, V. and Zhivotovsky, B. (2007) Mitochondrial oxidative stress: implications for cell death. Annu. Rev. Pharmacol. Toxicol. 47, 143-183.   DOI   ScienceOn
2 Veech, R. L., Eggleston, L. V. and Krebs, H. A. (1969) The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem. J. 115, 609-619.   DOI
3 Lee, S. M., Koh, H. J., Park, D. C., Song, B. J., Huh, T. L. and Park, J. W. (2002) Cytosolic $NADP^+$-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic. Biol. Med. 32, 1185-1196.   DOI   ScienceOn
4 Lee, S. M., Park, S. Y., Shin, S. W., Kil, I. S., Yang, E. S. and Park, J. W. (2009) Silencing of cytosolic $NADP^{(+)}$-dependent isocitrate dehydrogenase by small interfering RNA enhances the sensitivity of HeLa cells toward staurosporine. Free Rad. Res. 43, 165-173.   DOI   ScienceOn
5 Shin, S. W., Kil, I. S. and Park, J. W. (2010) Cytosolic $NADP^{(+)}$-dependent isocitrate dehydrogenase regulates cadmium-induced apoptosis. Biochem. Pharmacol. 79, 72-80.
6 Lee, S. M., Huh, T. L. and Park, J. W. (2001) Inactivation of $NADP^+$-dependent isocitrate dehydrogenase by reactive oxygen species. Biochimie 83, 1057-1065.   DOI   ScienceOn
7 Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494-498.   DOI   ScienceOn
8 Lee, J. H., Kim, I. S. and Park, J. W. (2004) The use of N-t-butyl hydroxylamine for radioprotection in cultured cells and mice. Carcinogenesis 25, 1435-1442.   DOI   ScienceOn
9 Esterbauer, H., Schaur, R. J. and Zollner, H. (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11, 81-128.   DOI   ScienceOn
10 Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B. W., Shaltiel, S. and Stadtman, E. R. (1990) Determination of carbonyl content of oxidatively modified proteins. Methods Enzymol. 186, 464-478.   DOI
11 Sian, J., Dexter, D. T., Lees, A. J., Daniel, S., Jenner, P. and Marsden, C. D. (1994) Glutathione-related enzymes in brain in Parkinson's disease. Ann. Neurol. 36, 356-361.   DOI   ScienceOn
12 Dexter, D. T., Jenner, P., Schapira, A. H. and Marsden, C. D. (1992) Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. The Royal Kings and Queens Parkinson's Disease Research Group. Annu. Neurol. 32, S94-S100.   DOI   ScienceOn
13 Tipton, K. F. and Singer, T. P. (1993) Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J. Neurochem. 61, 1191- 1206.   DOI   ScienceOn
14 Sriram, K., Pai, K. S., Boyd, M. R. and Ravindranath, V. (1997) Evidence for generation of oxidative stress in brain by MPTP: in vitro and in vivo studies in mice. Brain Res. 749, 44-52.   DOI   ScienceOn
15 Johannessen, J. N., Adams, J. N., Schuller, H. M., Bacon, J. P. and Markey, S. P. (1986) 1-Methyl-4-phenylpyridine $(MPP^+)$ induces oxidative stress in the rodent. Life. Sci. 38, 743-749.   DOI   ScienceOn
16 Zang, L. Y. and Misra, H. P. (1993) Generation of reactive oxygen species during the monoamine oxidase-catalyzed oxidation of the neurotoxicant, 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine. J. Biol. Chem. 268, 16504-16512.
17 Kirkman, H. N., Galiano, S. and Gaetani, G. F. (1987) The function of catalase-bound NADPH. J. Biol. Chem. 262, 660-666.
18 Koshland, D. E., Walsh, K. and LaPorte, D. C. (1985) Sensitivity of metabolic fluxes to covalent control. Curr. Top. Cell. Regul. 27, 13-22.   DOI
19 Kirsch, M. and de Groot, H. (2001) NAD(P)H, a directly operating antioxidant? FASEB J. 15, 1569-1574.   DOI
20 Kirsch, M. and de Groot, H. (2001) NAD(P)H, a directly operating antioxidant? FASEB J. 15, 1569-1574.   DOI
21 Jenner, P. (1996) Oxidative stress in Parkinson's disease and other neurodigenerative disorders. Pathol. Biol. 44, 57-64.
22 Berry, C., La Vecchia, C. and Nicotera, P. (2010) Paraquat and Parkinson's disease. Cell Death Differ. 17, 1115- 1125.   DOI   ScienceOn
23 Dexter, D. T., Carter, C. J., Wells, R. R., Javoy-Agid, F., Agid, Y., Lees, A., Jenner, P. and Marsden, C. D. (1989) Basal lipid peroxidation in subsantia nigra is increased in Parkinson's disease. J. Neurochem. 52, 381-389.   DOI