Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.5.298

Mitochondrial superoxide anion (O2·-) inducible "mev-1" animal models for aging research  

Ishii, Takamasa (Department of Molecular Life Science, Basic Medical Science and Molecular Medicine, Tokai University School of Medicine)
Miyazawa, Masaki (Department of Molecular Life Science, Basic Medical Science and Molecular Medicine, Tokai University School of Medicine)
Hartman, Phil S. (Department of Biology, Texas Christian University)
Ishii, Naoaki (Department of Molecular Life Science, Basic Medical Science and Molecular Medicine, Tokai University School of Medicine)
Publication Information
BMB Reports / v.44, no.5, 2011 , pp. 298-305 More about this Journal
Abstract
Most intracellular reactive oxygen species (ROS), especially superoxide anion ($O_2^{{\bullet}_-}$) that is converted from oxygen, are overproduced by excessive electron leakage from the mitochondrial respiratory chain. Intracellular oxidative stress that damages cellular components can contribute to lifestyle-related diseases such as diabetes and arteriosclerosis, and age-related diseases such as cancer and neuronal degenerative diseases. We have previously demonstrated that the excessive mitochondrial $O_2^{{\bullet}_-}$ production caused by SDHC mutations (G71E in C. elegans, I71E in Drosophila and V69E in mouse) results in premature death in C. elegans and Drosophila, cancer in mouse embryonic fibroblast cells and infertility in transgenic mice. SDHC is a subunit of mitochondrial complex II. In humans, it has been reported that mutations in SDHB, SDHC or SDHD often result in inherited head and neck paragangliomas (PGLs). Recently, we established Tet-mev-1 conditional transgenic mice using our uniquely developed Tet-On/Off system, which equilibrates transgene expression to endogenous levels. These mice experienced mitochondrial respiratory chain dysfunction that resulted in $O_2^{{\bullet}_-}$ overproduction. The mitochondrial oxidative stress caused excessive apoptosis leading to low birth weight and growth retardation in the neonatal developmental phase in Tet-mev-1 mice. Here, we briefly describe the relationships between mitochondrial $O_2^{{\bullet}_-}$ and aging phenomena in mev-1 animal models
Keywords
Aging; Apoptosis; Mitochondria; Oxidative stress; Tumorigenesis;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M. and Telser, J. (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44-84.   DOI   ScienceOn
2 Murfitt, R. R., Vogel, K. and Sanadi, D. R. (1976) Characterization of the mitochondria of the free-living nematode, Caenorhabditis elegans. Comp. Biochem. Physiol. B. 53, 423-430.   DOI   ScienceOn
3 Okimoto, R., Macfarlane, J. L., Clary, D. O. and Wolstenholme, D. R. (1992) The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130, 471-498.
4 Ishii, N., Fujii, M., Hartman, P. S., Tsuda, M., Yasuda, K., Senoo-Matsuda, N., Yanase, S., Ayusawa, D. and Suzuki, K. (1998) A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394, 694-697.   DOI   ScienceOn
5 Tsuda, M., Sugiura, T., Ishii, T., Ishii, N. and Aigaki, T. (2007) A mev-1-like dominant-negative SdhC increases oxidative stress and reduces lifespan in Drosophila. Biochem. Biophys. Res. Commun. 363, 342-346.   DOI   ScienceOn
6 Ishii, N., Takahashi, K., Tomita, S., Keino, T., Honda, S., Yoshino, K. and Suzuki, K. (1990) A methyl viologen- sensitive mutant of the nematode Caenorhabditis elegans. Mutat. Res. 237, 165-171.   DOI   ScienceOn
7 Honda, S., Ishii, N., Suzuki, K. and Matsuo, M. (1993) Oxygen-dependent perturbation of life span and aging rate in the nematode. J. Gerontl. Ser. A Biol. Sci. 48, B57-B61.
8 Strehler, B. L., Mark, D. D., Mildvan, A. S. and Gee, M. V. (1959) Rate and magnitude of age pigment accumulation in the human myocardium. J. Gerontl. 14, 257-264.
9 Gottlieb, E. and Tomlinson, I. P. (2005) Mitochondrial tumour suppressors: a genetic and biochemical update. Nat. Rev. Cancer 5, 857-866.   DOI   ScienceOn
10 Echtay, K. S. (2007) Mitochondrial uncoupling proteinswhat is their physiological role? Free Radic. Biol. Med. 43, 1351-1371.   DOI   ScienceOn
11 Chandel, N. S., Maltepe, E., Goldwasser, E., Mathieu, C. E., Simon, M. C. and Schumacker, P. T. (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. U.S.A. 95, 11715-11720.   DOI
12 Guzy, R. D., Hoyos, B., Robin, E., Chen, H., Liu, L., Mansfield, K. D., Simon, M. C., Hammerling, U. and Schumacker, P. T. (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 1, 401-408.   DOI   ScienceOn
13 Emerling, B. M., Weinberg, F., Snyder, C., Burgess, Z., Mutlu, G. M., Viollet, B., Budinger, G. R. and Chandel, N. S. (2009) Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic. Biol. Med. 46, 1386-1391.   DOI   ScienceOn
14 Vuillaume, M. (1987) Reduced oxygen species, mutation, induction and cancer initiation. Mutat. Res. 186, 43-72.   DOI   ScienceOn
15 Collins, A. R., Duthie, S. J., Fillion, L., Gedik, C. M., Vaughan, N. and Wood, S. G. (1997) Oxidative DNA damage in human cells: the influence of antioxidants and DNA repair. Biochem. Soc. Trans. 25, 326-331.   DOI
16 Uchida K. (2003) 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog. Lipid Res. 42, 318-343.   DOI   ScienceOn
17 Cross, C. E., Halliwell, B., Borish, E. T., Pryor, W. A., Ames, B. N., Saul, R. L., McCord, J. M. and Harman, D. (1987) Oxygen radicals and diseases. Ann. Intrern. Med. 107, 526-545.   DOI   ScienceOn
18 Reddy, P. H. and Beal, M. F. (2005) Are mitochondria critical in the pathogenesis of Alzheimer's disease? Brain Res. Rev. 49, 618-632.   DOI   ScienceOn
19 Finkel, T. and Holbrook, N. J. (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247.   DOI   ScienceOn
20 Lenaz, G. (1998) Role of mitochondria in oxidative stress and ageing. Biochim. Biophys. Acta. Bioenerg. 1366, 53- 67.   DOI   ScienceOn
21 Raha, S. and Robinson, B. H. (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 25, 502-508.   DOI   ScienceOn
22 Sun, J. and Trumpower, B. L. (2003) Superoxide anion generation by the cytochrome bc1 complex. Arch. Biochem. Biophys. 419, 198-206.   DOI   ScienceOn
23 St-Pierre, J., Buckingham, J. A., Roebuck, S. J. and Brand, M. D. (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem. 277, 44784-44790.   DOI   ScienceOn
24 Lenaz, G., Fato, R., Genova, M. L., Bergamini, C., Bianchi, C. and Biondi, A. (2006) Mitochondrial complex I: structural and functional aspects. Biochim. Biophys. Acta. 1757, 1406-1420.   DOI   ScienceOn
25 Senoo-Matsuda, N., Yasuda, K., Tsuda, M., Ohkubo, T., Yoshimura, S., Nakazawa, H., Hartman, P. S. and Ishii, N. (2001) A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans. J. Biol. Chem. 276, 41553-41558.   DOI   ScienceOn
26 Ishii, T., Yasuda, K., Akatsuka, A., Hino, O., Hartman, P. S. and Ishii, N. (2005) A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis. Cancer Res. 65, 203-209.
27 Paranagama, M. P., Sakamoto, K., Amino, H., Awano, M., Miyoshi, H. and Kita, K. (2010) Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from Ascaris suum mitochondrial complex II. Mitochondrion 10, 158-165.   DOI   ScienceOn
28 Leonard, J. V. and Schapira, A. H. (2000) Mitochondrial respiratory chain disorders: I. mitochondrial DNA defects. Lancet 355, 299-304.   DOI   ScienceOn
29 Nohl, H. and Hegner, D. (1978) Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 82, 563-567.   DOI   ScienceOn
30 Wallace, D. C. (1999) Mitochondrial diseases in man and mouse. Science 283, 1482-1488.   DOI   ScienceOn
31 Attardi, G. and Schatz, G. (1988) Biogenesis of mitochondria. Ann. Rev. Cell Biol. 4, 289-333.   DOI
32 Turrens, J. F. (2003) Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335-344.   DOI   ScienceOn
33 Chance, B., Sies, H. and Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527-605.   DOI
34 Fridovich, I. (2004) Mitochondria: are they the seat of senescence? Aging Cell 3, 13-16.   DOI   ScienceOn
35 Oberley, L. W., Oberley, T. D. and Buettner, G. R. (1980) Cell differentiation, aging and cancer: the possible roles of superoxide and superoxide dismutases. Med. Hypotheses 6, 249-268.   DOI   ScienceOn
36 Turrens, J. F. (1997) Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 17, 3-8.   DOI   ScienceOn
37 Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W. and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766-1769.   DOI
38 Freundlieb, S., Schirra-Muller, C. and Bujard, H. (1999) A tetracycline controlled activation/repression system with increased potential for gene transfer into mammalian cells. J. Gene Med. 1, 4-12.   DOI   ScienceOn
39 Uchida, S., Sakai, S., Furuichi, T., Hosoda, H., Toyota, K., Ishii, T., Kitamoto, A., Sekine, M., Koike, K., Masushige, S., Murphy, G., Silva, A. J. and Kida, S. (2006) Tight regulation of transgene expression by tetracycline-dependent activator and repressor in brain. Genes Brain Behav. 5, 96-106.
40 Oberley, L. W. and Buettner, G. R. (1979) Role of superoxide dismutase in cancer: a review. Cancer Res. 39, 1141-1149.
41 Oberley, L. W. and Oberley, T. D. (1988) Role of antioxidant enzymes in cell immortalization and transformation. Mol. Cell. Biochem. 84, 147-153.   DOI
42 Tomitsuka, E., Kita, K. and Esumi H. (2010) The NADH-fumarate reductase system, a novel mitochondrial energy metabolism, is a new target for anticancer therapy in tumor microenvironments. Ann. NY Acad. Sci. 1201, 44-49.   DOI   ScienceOn
43 Gimenez-Roqueplo, A. P., Favier, J., Rustin, P., Rieubland, C., Kerlan, V., Plouin, P. F., Rötig, A. and Jeunemaitre, X. (2002) Functional consequences of a SDHB gene mutation in an apparently sporadic pheochromocytoma. J. Clin. Endocrinol. Metab. 87, 4771- 4774.   DOI
44 Selak, M. A., Armour, S. M., MacKenzie, E. D., Boulahbel, H., Watson, D. G., Mansfield, K. D., Pan, Y., Simon, M. C., Thompson, C. B. and Gottlieb, E. (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7, 77-85.   DOI   ScienceOn
45 Semenza, G. L. (2003) Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721-732.   DOI   ScienceOn
46 Ishii, T., Miyazawa, M., Onodera, A., Yasuda, K., Kawabe, N., Kirinashizawa, M., Yoshimura, S., Maruyama, N., Hartman, P. S. and Ishii, N. (2011) Mitochondrial reactive oxygen species generation by the SDHC V69E mutation causes low birth weight and neonatal growth retardation. Mitochondrion 11, 155-165.   DOI   ScienceOn
47 Nakada, K., Inoue, K., Chen, C. S., Nonaka, I., Goto, Y., Ogura, A. and Hayashi, J. I. (2001) Correlation of functional and ultrastructural abnormalities of mitochondria in mouse heart carrying a pathogenic mutant mtDNA with a 4696-bp deletion. Biochem. Biophys. Res. Commun. 288, 901-907.   DOI   ScienceOn
48 Ichimiya, H., Huet, R. G., Hartman, P., Amino, H., Kita, K. and Ishii, N. (2002) Complex II inactivation is lethal in the nematode Caenorhabditis elegans. Mitochondrion 2, 191-198.   DOI   ScienceOn
49 Miyazawa, M., Ishii, T., Kirinashizawa, M., Yasuda, K., Hino, O., Hartman, P. S. and Ishii, N. (2008) Cell growth of the mouse SDHC mutant cells was suppressed by apoptosis throughout mitochondrial pathway. BioScience Trends 2, 22-30.
50 Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. U.S.A. 89, 5547-5551.   DOI   ScienceOn
51 Sun, F., Huo, X., Zhai, Y. A., Wang, A., Xu, J., Su, D., Bartlam, M. and Rao, Z. (2005) Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121, 1043-1057.   DOI   ScienceOn
52 Bourgeron, T., Rustin, P., Chretien, D., Birch-Machin, M., Bourgeois, M., Viegas-Péquignot, E., Munnich, A. and Rötig, A. (1995) Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat. Genet. 11, 144-149.   DOI   ScienceOn
53 Ackrell, B. A. (2000) Progress in understanding structure- function relationships in respiratory chain complex II. FEBS Lett. 466, 1-5.   DOI   ScienceOn
54 Astuti, D., Latif, F., Dallol, A., Dahia, P. L., Douglas, F., George, E., Sköldberg, F., Husebye, E. S., Eng, C. and Maher, E. R. (2001) Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am. J. Hum. Genet. 69, 49-54.   DOI   ScienceOn
55 Ackrell, B. A. (2002) Cytopathies involving mitochondrial complex II. Mol. Aspects. Med. 23, 369-384.   DOI   ScienceOn
56 Baysal, B. E., Ferrell, R. E., Willett-Brozick, J. E., Lawrence, E. C., Myssiorek, D., Bosch, A., van der Mey, A., Taschner, P. E., Rubinstein, W. S., Myers, E. N., Richard, C. W. 3rd, Cornelisse, C. J., Devilee, P. and Devlin, B. (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848-851.   DOI   ScienceOn
57 Niemann, S. and Müller U. (2000) Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat. Genet. 26, 268-270.   DOI   ScienceOn
58 Gimenez-Roqueplo, A. P., Favier, J., Rustin, P., Mourad, J. J., Plouin, P. F., Corvol, P., Rötig, A. and Jeunemaitre, X. (2001) The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway. Am. J. Hum. Genet. 69, 1186- 1197.   DOI   ScienceOn
59 Spoerri, P. E., Glass, P. and El Ghazzawi, E. (1974) Accumulation of lipofuscin in the myocardium of senile guinia pigs; dissolution and removal of lipofuscin following dimethylaminoethyl p-chloroohenoxyacetate administration. An electron microscopy study. Mech. Ageing Dev. 3, 311-321.   DOI   ScienceOn
60 Stadman, E. R. and Oliver, C. N. (1991) Metal-catalyzed oxidation of proteins. J. Biol. Chem. 266, 2005-2008.
61 Stadman, E. R. (1992) Protein oxidation and aging. Science 257, 1220-1224.   DOI
62 Hartman, P. S, Ishii, N., Kayser, E. B., Morgan, P. G. and Sedensky, M. M. (2001) Mitochondrial mutations differentially affect aging, mutability and anesthetic sensitivity in Caenorhabditis elegans. Mech. Ageing Dev. 122, 1187- 1201.   DOI   ScienceOn
63 Hosokawa, H., Ishii, N., Ishida, H., Ichimori, K., Nakazawa, H. and Suzuki, K. (1994) Rapid accumulation of fluorescent material with aging in an oxygen-sensitive mutant mev-1 of Caenorhabditis elegans. Mech. Ageing Dev. 74, 161-170.   DOI   ScienceOn
64 Adachi, H., Fujiwara, Y. and Ishii, N. (1998) Effects of oxygen on protein carbonyl and aging in Caenorhabditis elegans mutants with long (age-1) and short (mev-1) life spans. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 53, B240- 244.
65 Senoo-Matsuda, N., Hartman, P. S., Akatsuka, A., Yoshimura, S. and Ishii, N. (2003) A complex II defect affects mitochondrial structure, leading to ced-3- and ced-4-dependent apoptosis and aging. J. Biol. Chem. 278, 22031- 22036.   DOI   ScienceOn
66 Yankovskaya, V., Horsefield, R., Tornroth, S., Luna- Chavez, C., Miyoshi, H., Leger, C., Byrne, B., Cecchini, G. and Iwata, S. (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299, 700-704.   DOI   ScienceOn
67 Cecchini, G. (2003) Function and structure of complex II of the respiratory chain. Annu. Rev. Biochem. 72, 77-109.   DOI   ScienceOn
68 Martin, I. and Grotewiel, M. S. (2006) Oxidative damage and age-related functional declines. Mech. Ageing Dev. 127, 411-423.   DOI   ScienceOn
69 Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M. and Mazur, M. (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160, 1-40.   DOI   ScienceOn